Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 29 dokumen yang sesuai dengan query
cover
Hanindito Titah Prameswara
"Salah satu contoh penerapan energi baru terbarukan EBT yang sedang berkembang adalah Pembangkit Listrik Tenaga Surya PLTS. Berdasarkan data Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2019-2028 disebutkan bahwa potensi energi matahari (surya) di Indonesia sebesar 207.898 MW (4,80 kWh/m2/hari) dan hanya sebesar 78,5 MW kapasitas terpasang di Indonesia. Pada penelitian ini dilakukan studi interkoneksi PLTS 5 MWp dengan jaringan tegangan menengah 20 kV Daerah X sebagai salah satu penerapan energi baru terbarukan di Indonesia. Studi interkoneksi mencakup analisis aliran daya dan analisis gangguan hubung singkat tiga fasa. Pada analisis aliran daya diperoleh hasil bahwa sistem PLTS mampu menyuplai kebutuhan beban pada sistem sebesar 5.000 kW daya aktif. Didapatkan juga bahwa interkoneksi PLTS dengan sistem mengakibatkan kenaikan level tegangan dari setiap bus pada sistem sebesar 0,08-1,41%, serta membuat perubahan persentase pembebanan komponen sebesar 0,01% hingga 93,01%. Hasil analisis gangguan hubung singkat tiga fasa menunjukkan bahwa interkoneksi PLTS dengan sistem memiliki besar nilai arus gangguan hubung singkat sebesar 5,70-7,01 kA, sehingga nilai arus gangguan untuk seluruh bus masih jauh di bawah nilai kapasitas pemutusan arus hubung singkat sistem proteksi yang bernilai 25 kA. Hasil studi interkoneksi yang diperoleh menujukkan bahwa interkoneksi sistem PLTS 5 MWp dengan jaringan tegangan menengah 20 kV Daerah X dapat dilakukan.

One example of the application of new renewable energy that is currently developing is solar power plant. Based on data from Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2019-2028, it is stated that the potential of solar energy in Indonesia is 207,898 MW (4.80 kWh/m2/ day) and only 78.5 MW of capacity installed in Indonesia. In this study, a 5 MWp solar power plant was interconnected with a 20 kV medium-voltage network of Area X as one of the renewable energy applications in Indonesia. Interconnection studies include power flow analysis and three phase short circuit fault analysis. In the analysis of the power flow results obtained that the Solar Power Plant system is capable of supplying the load requirements to the system of 5,000 kW active power. It was also found that interconnection of solar power plant with the system resulted in an increase in the voltage level of each bus in the system by 0.08 to 1.41%, as well as changing the percentage of component loading by 0.01% -93.01%. The results of the three-phase short circuit fault analysis show that the interconnection of the solar power plant system has a short circuit fault current value of 5.70-7.01 kA, so the fault current value for the whole bus is still far below the value of the short circuit current capacity of the protection systems short circuit worth 25 kA. The results of the interconnection study showed that interconnection of a 5 MWp solar power plant system with a 20 kV medium voltage network Area X can be carried out."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qashtalani Haramaini
"[Sejalan dengan pertumbuhan industrialisasi, dimana kebutuhan akan tenaga listrik besar sekali, sehingga generator dapat digunakan sebagai sumber pembangkit tenaga listrik. Dalam pengoperasiannya, generator sering mengalami gangguan hubung singkat yang terjadi didalam maupun diluar generator. Gangguan tersebut dapat terjadi setiap saat dan bersifat merusak generator yang dapat mengganggu aliran daya kekonsumen. Akibat yang ditimbulkan tersebut maka perlu diberikan peralatan pengaman untuk generator, agar gangguan yang terjadi setiap saat dapat diamankan sedini mungkin tanpa merusak generator dan apabila generator dihubungkan kesistem tidak mengganggu sistem. Pemilihan rele pengaman untuk generator tersebut didasarkan pada gangguan yang mungkin timbul, yang ditinjau dari situasi dan kondisi setempat, sehingga setelah dihitung didapat peneyetelan rele diferensial dengan batas ambang 0,16 A dan rele arus lebih 0,96 A dengan waktu 2 detik , rele gangguan tanah stator 0,17 A, rele daya lebih 144 watt rele tegangan lebih 121 Volt, rele beban tak seimbang 0,94 A dan 12,4 detik, rele kehilangan medan 1,2 Ohm dan diameter kerja 9,7 Ohm dan rele daya balik disetel -2,34%
, In line with the growth of industrialization, where the demand for power is
enormous, so that the generator can be used as a source of power generation.
In conducting the operation, the generator often experience short circuit that
occurred within and outside the generator The disorder can occur at any time and
destructive generator that can disrupt power flow to consument.
With the impact that it should be given safety equipment to the generator, so that
disturbance at any waktu can be secured as early as possible without damaging
the generator when the generator is connected to a system and do not disturb the
sistem.
Selection of safety relays for the generator is based on problems that may arise,
which in terms of local circumstances, so that can know what amount of the
amount of influence in the disorder, which scale is used to determine the amount
of setting. So that after calculation ,relay differential threshold setting is 0,16 A
and overcurrent is 0,96 A with time delay 2 s,stator ground fault relay 0,17
A,Overload relay 144 W, Overvoltage 121 V, Load Unbalance relay 0,94 A and
12,4 s, Loss of Excitation relay 1,2 Ohm and diameter 9,7 Ohm and Reverse
Power Relay is setting -2,34%]
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S62029
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maula Darda Natanegara
"Energi listrik yang dibutuhkan untuk aktivitas pertambangan sangat diwajibkan memiliki kualitas yang baik dan aman bagi sistem tenaga listrik dan keselamatan manusia. Gangguan hubung singkat harus dihindari agar sistem tenaga listrik bekerja dengan optimal. Oleh karena itu, skripsi ini dilakukan dengan metode studi literatur dengan mencari dan mengumpulkan bahan yang ada kaitannya dengan dengan gangguan hubung singkat. Selanjutnya, dirancang suatu sistem tenaga listrik PT Bukit Asam (Persero), Tbk. dengan menggunakan software ETAP 12.6.0 (Electric Transient Analyzer Program) yang kemudian dilakukan simulasi gangguan hubung singkat pada rel 20 kV di sistem saat konfigurasi beban 60%, 80% dan 100% agar didapatkan kemampuan sistem yang optimal.
Hasil dari simulasi menunjukkan bahwa ketika konfigurasi beban 100%, seluruh rel 20 kV pada sistem tenaga listrik terdapat arus hubung singkat yang tinggi dan diatas kapasitas lebur pemutus tenaga sehingga direkomendasikan peningkatakan kapasitas lebur pemutus tenaga atau pemasangan CLR (Current Limitting Reactor) untuk membatasi arus hubung singkat yang terjadi pada rel 20 kV.

The electrical energy for mining activities is very required to have a good quality and safe for electrical power systems and human safety . Short circuit must be avoided so that the power system to work optimally . Therefore, this thesis carried out by the method of literature study and collect materials in connection with the short circuit. Furthermore, I designed an electrical power system PT Bukit Asam (Persero), Tbk. using software ETAP 12.6.0 (Electric Transient Analyzer Program) which is then simulated short circuit at busbar 20 kV when current load configurations of 60%, 80% and 100% in order to obtain optimal system capabilities. The results of the simulations show that when the configuration to 100% load, the entire busbar 20 kV of the power system are short-circuit current is high and above rating circuit breaker so it is recommended to increase rating capacity circuit breaker or installation CLR (Current Limitting Reactor) for current limiting short circuit on a rail 20 kV.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64615
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sigalingging, Rahmat
"Gangguan yang terjadi pada sistem tenaga listrik sebagian besar adalah hubung singkat dan gangguan tersebut akan meningkatkan arus hubung singkat sampai berlipat ganda dibandingkan arus nominal peralatan yang mengalami gangguan. Subsistem Bekasi-Priok adalah salah satu subsistem yang berasal dari APB DKI Jakarta & Banten yang telah memiliki nilai arus hubung singkat yang tinggi dibandingkan dengan subsistem lainnya dari APB DKI Jakarta & Banten. Seperti yang telah diketahui berdasarkan data yang berasal dari APB DKI Jakarta & Banten terdapat 22 GI di subsistem Bekasi-Priok dan 22 GI yang ada pada subsistem Bekasi-Priok, akan tetapi terdapat 15 GI berada pada nilai arus hubung singkat diatas atau diluar kapasitas breaking capacity (40kA). Oleh sebab itu, harus dilakukan suatu tindakan supaya mengurangi nilai arus hubung singkat agar kerusakan akibat ganguan hubung singkat dapat diminimalkan. Salah satu cara untuk mengurangi arus hubung singkat adalah dengan memisah subsistem Bekasi-Priok menjadi 2 Susbsistem, yaitu subsistem Bekasi 1,2-Priok Blok 1,2 dan susbsitem Cawang 2-Priok Blok 3. Dan berdasarkan hasil simulasi simulasi yang didapat dengan menggunakan Tools Dig Silent, cara pemisahan subsistem tersebut dapat menurunkan nilai arus hubung singkat secara signifikan di subsistem Bekasi-Priok dari 15 GI menjadi 1 GI, dan dari data hasil simulasi yang didapat nilai arus hubung singkat tertinggi di GI Priok Barat dengan nilai 64,21 kA turun menjadi 43,61 kA.

Disruption of the electric power system is largely short circuit and the interference will increase the short-circuit current up to double compared to the nominal current equipment is impaired. Bekasi-Priok subsystem is one of the subsystems derived from APB Jakarta and Banten who have had short-circuit current value which is high compared with other subsystems of the APB Jakarta and Banten. As already known based on data derived from the APB Jakarta and Banten there are 22 GI in subsystem Bekasi-Priok and 22 GIs exist in the subsystem Bekasi-Priok, but there are 15 GI is the value of short circuit current above or beyond the capacity of breaking capacity (40kA). Therefore, to do an act in order to reduce the short circuit current value that the damage caused by a short circuit interruption can be minimized. One way to reduce the short circuit current is the Bekasi-Priok subsystem separates into 2 Susbsistem, namely 1,2-Priok subsystem Bekasi Block 1.2 and susbsitem Cawang-Priok 2 Block 3. From the simulation results of simulation obtained by using Tools Dig Silent, the means of separation subsystems can reduce the value of short circuit current significantly in Bekasi-Priok subsystem GI of 15 to 1 GI, and data simulation results obtained short-circuit current value of the highest in West Priok GI value dropped 64.21 kA be 43.61 kA.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63212
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Risky Zachary
"Rele diferensial merupakan sistem proteksi tenaga listrik untuk mencegah gangguan internal. Namun, terjadi trip yang tidak diharapkan oleh rele diferensial akibat gangguan eksternal di jaringan transmisi. Gangguan tersebut didasari oleh layangan yang menyebabkan hubung singkat pada sisi jaringan transmisi. Sebagai mitigasi awal sistem proteksi PLTP, diperlukan pertimbangan ulang setelan eksisting untuk menjaga keandalan rele diferensial. Informasi komponen resistansi burden transformator arus dan setelan arus eksisting dibutuhkan sebagai basis kalkulasi setelan ulang rele. Berdasarkan kalkulasi dengan memperhitungkan faktor kesalahan, penggunaan kabel 4mmsq untuk CT lebih disarankan. Selain itu, nilai setelan 87#1 untuk arus pickup 1.125A, slope 17%, dan waktu tunda 2 siklus lebih disarankan akibat ditemukan faktor kesalahan pada komponen pendukung rele. Sehingga, beroperasinya rele diferensial diluar kehendak dapat diminimalisasi.

Differential relays are an electrical power protection system used to prevent internal fault. However, an unexpected trip occurred by the differential relay due to external fault in the transmission network. The fault was based on a kite which caused a short circuit on the transmission network side. As an initial mitigation for the PLTP protection system, it is necessary to reconsider the existing settings to maintain the reliability of the differential relay. Information on current transformer burden resistance components and existing current settings is needed as a basis for relay reset calculations. Based on the calculation that took account for error factors, the use of 4mmsq cable for CT is more recommended. Aside from that, the setting value of 87#1 for a pickup current of 1.125A, a slope of 17%, and a delay time of 2 cycles is recommended as a result of an error factor found in the relay supporting components. Thus, the operation of differential relays without intention can be minimized."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Agung Sahputra
"Perangkat proteksi yang baik merupakan kunci keandalan dalam suatu sistem tenaga listrik. PLN P3B Jawa Bali sebagai pemasok utama tenaga listrik pulau ini tentunya dari waktu ke waktu selalu berusaha melakukan upaya guna mengoptimalisasi keandalan ini. Oleh karena itu, skripsi ini membahas mengenai perancangan perangkatreaktor pembatas arus hubung singkat guna meminimalkan nilai arus gangguan yang terjadi pada suatu sistem tenaga listrik. Berfokus kepada skenario penempatan reaktor pembatas arus hubung singkat, akan dipaparkan bagaimana optimasi penurunan nilai arus hubung singkat bila pembatas arus ini dipasang pada hubungan antar busbar, penyulang, ataupun pada generator. Perancangan instalasi dan analisis arus hubung singkat pada tulisan ini akan menggunakan perangkat lunak etap dan digsilent sebagai simulatornya. Dari simulasi, didapatkan bahwa hubungan antar busbar merupakan skenario paling tepat untuk penempatan reaktor, dan besarnya impedansi ideal yang dapat dipasang pada sistem ini adalah sebesar 10 ohm.

Good protection device is the key of reliability in power system. PLN P3B Jawa-Bali as the main supplier in this island surely working for the reliability of their power system time to time. That’s why this paper will discuss about the design of current limiting reactor for reduce fault current in the power system. Focus on the placement scheme of the current limiting reactor, it will explain about how to optimize the reduction of the fault current if this reactor installed between the busbar, outgoing feeder, or in the generator. Installation design and analysis of the fault current will use ETAP and DIGSILENT as the simulator program. From the simulation, busbar section is the best scheme to install the reactor and the maximum value of the ideal reactor impedans for this system is 10 ohm."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46246
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ginting, Yoses Brebayrulige
"Peningkatan kapasitas produksi dan penambahan daya listrik pada plant 3AA terbaru berakibat pada kenaikan arus hubung singkat maksimum yang melewati pemutus tenaga tegangan menengah hingga mencapai 45,998kA. Nilai tersebut jauh melebihi  batas kemampuan pemutus tenaga eksisting sehingga diperlukan penggantian peralatan dengan kemampuan menahan arus hubung singkat yang lebih tinggi. Penempatan reaktor pembatas arus pada skenario 1 menurunkan arus hubung singkat hingga sebesar 28,412kA (reaktansi reaktor 0,279) dan pada 2 skenario hingga sebesar 30,425kA (reaktansi raktor 0,1). Pada skenario 3, arus hubung singkat yang melewati 3AA-SWGR01, 3AA-CBS01 dan 3AA-CBS02 dapat diturunkan hingga sebesar 30,626kA dan pada 3AA-SWGR02 dan 3AA-CBS03 sebesar 27,567kA (reaktansi reaktor 0,462). Dengan demikian penggantian pemutus tenaga eksisting (3AA-SWGR01, 3AA-SWGR02 dan 3AA-CBS01) tidak diperlukan. Namun demikian pengoperasian reaktor pembatas arus mengakibatkan peningkatan rugi-rugi daya dan jatuh tegangan. Penempatan reaktor pada skenario 3 merupakan pilihan terbaik karena memberikan rugi-rugi daya minimal dan jatuh tegangan dalam batas yang diinginkan. Investasi reaktor pada skenario 3 juga layak secara keekonomian karena memiliki nilai NPV sebesar USD 467.028 dan IRR 18%, di atas tingkat suku bunga.

With expansion of existing 3AA petrochemical plant, additional demand and development of power distribution system is required. This expansion increases the maximum available short circuit current to 45,998kA. Therefore, existing switchgear shall be replaced with enhanced rating. This replacement requires an expensive cost and shutdown of the existing plant. Current limiting reactor installed in scenario 1 reduce short circuit current to 28,412kA (reactor reactance 0,279). In scenario 2, short circuit current was reduced to 30,425kA (reactor reactance 0,1). In scenario 3, short circuit current was reduced to 30,425kA for 3AA-SWGR01, 3AA-CBS01 and 3AA-CBS02 and 27,567kA for both 3AA-SWGR02 and 3AA-CBS03 (reactor reactance 0,462). In conclusion, switchgear replacement is not required. However, current limiting reactor operation effect losses and voltage drop. Reactor installed in scenario 3 is the best option since its effect on losses and voltage drop is not so severe compare to other scenario. At the end, scenario 3 provide a significant positive NPV (USD 467.028) and IRR of 18%, which is higher than discount rate (12%)."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54268
UI - Tesis Membership  Universitas Indonesia Library
cover
Alpha Agustinus
"Perusahaan tambang sangat tergantung pada bahan bakar fosil untuk memenuhi kebutuhan listrik dan kegiatan pertambangan seperti penggunaan alat berat. Oleh karena itu, emisi gas rumah kaca akibat pembakaran bahan bakar fosil ini telah menjadi isu utama terkait dampak terhadap lingkungan akibat kegiatan pertambagan. Energi terbarukan seperti Pembangkit Listrik Tenaga Surya (PLTS) dapat menjadi solusi alternatif untuk mengatasi masalah tersebut. Penelitian ini bertujuan untuk meneliti bauran PLTS yang optimal pada pabrik pengolahan mineral di tambang emas Newmont Suriname. Perangkat lunak HOMER digunakan untuk mendesain bauran PLTS paling optimal. Perangkat lunak ETAP digunakan untuk menvalidasi desain secara teknis teknis melalui analisis aliran daya dan analisis arus hubung singkat. Hasil penelitian menunjukkan kapasitas bauran PLTS paling optimal adalah 30 MW, dimana menurunkan Cost of Electricity (COE) dari cent $17,1/kWh menjadi cent $16,3/kWh dan emisi CO2 dari 142.682 ton/tahun menjadi 123.852 ton/tahun. Bauran PLTS ini layak secara teknis dimana level tegangan di semua bus masih dalam batas yang diperbolehkan menurut standar IEEE-1547-2018 dan arus hubung singkat maksimum tidak melebihi kapasitas dari switchgear terpasang.

Mining companies are highly dependent on fossil fuels to meet their electricity needs and mining activities such as the use of heavy equipment. Therefore, greenhouse gas emissions due to burning of fossil fuels have become a major issue related to the impact on the environment due to mining activities. Renewable energy such as Solar Power Plants (Photovoltaic) can be an alternative solution to overcome this problem. This study aims to examine the optimal photovoltaic penetration at mineral processing plant at Newmont Suriname gold mine. HOMER software is used to design the most optimal photovoltaic penetration. ETAP software is used to technically validate the design through power flow analysis and short-circuit analysis. The results showed that the most optimal photovoltaic penetration capacity is 30 MW, which reduced the Cost of Electricity (COE) from cent $17.1/kWh to cent $16.3/kWh and CO2 emissions from 142,682 tons/year to 123,852 tons/year. This photovoltaic penetration is ??technically feasible where the voltage level at all buses is within the permissible limits according to the IEEE-1547-2018 standard and the maximum short-circuit current does not exceed the capacity of the installed switchgear."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Doni Abdul Mukti
"Proteksi adalah pengaman pada sistem tenaga listrik yang terpasang pada sistem distribusi tenaga listrik, trafo tenaga, transmisi tenaga listrik dan generator listrik dipergunakan untuk mengamankan sistem tenaga listrik dari gangguan listrik atau beban lebih dengan cara memisahkan bagian sistem tenaga listrik yang terganggu dengan sistem tenaga listrik yang tidak terganggu sehingga sistem kelistrikan yang tidak terganggu dapat terus bekerja.
Sistem proteksi pada gardu T75B, T149 dan MG61 terjadi kegagalan kerja dimana saat ada gangguan hubung singkat disisi konsumen, mengakibatkan PMT (Pemutus Tenaga) Penyulang trip. Hal ini mengakibatkan pemadaman meluas yang tidak diharapkan. Untuk mengetahui penyebab kegagalan sistem proteksi dilakukan beberapa pengujian dan analisis menggunakan metode Root Cause Analysis yaitu pengujian koordinasi relay proteksi, pengujian performa alat proteksi, analisis konstruksi sistem proteksi, dan Perhitungan pemilihan alat proteksi.
Pada gardu T75B, penyebab kegagalan sistem proteksi terdapat pada kesalahan pemilihan Transformator Arus yang jenuh saat dialiri arus gangguan melebihi 3.375 A. Pada gardu T149, penyebab kegagalan sistem proteksi terdapat pada pengaturan timing trip antara gardu dstribusi dan penyulang koasi memiliki kesamaan pada kurva Definite Time yaitu 0,2 sekon. Pada gardu MG61, penyebab kegagalan sistem proteksi terdapat pada kesalahan pemilihan Transformator Arus yang jenuh saat dialiri arus gangguan melebihi 1.250 A. Diharapkan dengan hasil pengujian tersebut dapat menjadi acuan untuk perbaikan sistem proteksi sehingga kegagalan serupa tidak terulang kembali.

Protection is a safety in the electric power system installed in the electric power distribution system, power transformer, electric power transmission, and generator used to secure the power system electricity from electrical disturbances or overloads by separating the disturbed parts of the electric power system from the undisturbed electrical power system so that the undisturbed electrical system can continue to work.
The protection system at the Distribution Substation of T75B, T149 and MG61 has a work failure where when there is a short circuit on the consumer side, it causes the PMT (Power Breaker) for the Feeder does not trip. This resulted in an unexpected widespread blackout. To find out the cause of the failure of the protection system, several tests and analyzes were carried out using Root Cause Analysis methods, namely protection relay coordination testing, protection equipment performance testing, protection system construction analysis, and calculation of selection of protection equipment.
At the T75B substation, the cause of the protection system failure is the Current Transformer design error which is saturated when the fault current exceeds 3.375 A. At the T149 substation, the cause of the protection system failure is the timing trip setting between the distribution substation and the feeder which has the same Definite Time curve as 0,2 sec. At the MG61 substation, the cause of the failure of the protection system is the Current Transformer selection which is saturated when the fault current exceeds 1.250 A.It is hoped that the test results can be used as a reference for improvement protection system so that similar failures do not recur.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3   >>