Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17 dokumen yang sesuai dengan query
cover
Nawy, Edward G.
London: Longman, 1996
620.112 17 NAW f
Buku Teks SO  Universitas Indonesia Library
cover
Nawy, Edward G.
New York: John Wiley & Sons, 2001
624.183 4 NAW f
Buku Teks  Universitas Indonesia Library
cover
Napitupulu, Richard Alfonso Mangaraja
"Banyak penelitian yang telah dilakukan dalam menemukan model yang sesuai bagi pengontrolan dan prediksi dari evolusi mikrostruktur yang terkait dengan sifat mekanik dari baja karbon, diantaranya dengan memprediksi keadaan mikrostruktur selama proses anil, deformasi, dan setelah deformasi. Pada penelitian-penelitian tersebut pengujian yang dilakukan umumnya menggunakan deformasi dengan menggunakan metode kompresi, torsi, dan bending. Oleh sebab itu, pengujian dengan deformasi menggunakan metode tarik menjadi suatu tantangan yang menarik disebabkan gaya yang bekerja pada mesin uji tarik konvensional adalah uni aksial, berbeda dengan metode kompresi, torsi dan bending. Untuk memperoleh analisa deformasi regangan bidang seperti pada metode kompresi, torsi dan bending, maka pada proses uji tarik dilakukan dengan memodifikasi bentuk spesimen agar memenuhi persyaratan uji tarik regangan bidang, melalui pengamatan visual.
Penelitian ini bertujuan untuk memperoleh model kinetika pertumbuhan butir ferit pada pengerjaan panas baja karbon dengan menggunakan mesin uji tarik. Awalnya material dipanaskan sampai temperatur 900oC, kemudian dideformasi masing-masing pada temperatur 750oC, 800oC dan 850oC, dengan laju regangan 0,1 per detik. Setelah dideformasi dilakukan pendinginan udara. Hasil tarik panas tersebut memperlihatkan kecenderungan pertumbuhan butir yang sama dengan model empiris dan mampu menghasilkan ultra fine ferrite grain dan butir nano. Adapun model kinetika pertumbuhan butir ferit yang diperoleh dari pemodelan variabel proses uji tarik panas sudah sesuai dengan hasil pengamatan dengan tingkat kesalahan sepuluh persen dan berada dibawah model prediksi lainnya. Adapun model persamaan empiris besar butir ferit yang diperoleh dalam penelitian ini adalah Agar lebih sempurnanya model tersebut, maka perlu dilakukan validasi dengan menggunakan canai panas dengan kondisi dan parameter yang sama dengan uji tarik. Dari hasil validasi dapat diamati bahwa model uji tarik panas tersebut menghasilkan besar butir dan kecenderungan yang berbeda dengan hasil canai panas. Namun besar butir ferit dan kecenderungan dari hasil canai panas tersebut dapat didekati dengan menggunakan uji tarik panas regangan bidang melalui formula. Dengan adanya formula ini, maka diharapkan evolusi mikrostruktur selama proses canai panas dapat diamati di laboratorium yang hanya memiliki mesin uji tarik.

Many researchs has been done in finding a suitable model for the control and prediction of microstructural evolution associated with the mechanical properties of carbon steel, such as by predicting the state of microstructure during the annealing process, deformation, and after deformation. In these studies generally use the tests performed using the method of compression deformation, torsion, and bending. Therefore, testing deformation using the tensile method to be an interesting challenge due to the force acting on a conventional machine is the uniaxial tensile test, in contrast to the method of compression, torsion and bending. To obtain the plane strain deformation analysis such as happen on compression, torsion and bending, could be done by modifying the tensile test specimens in order to meet the requirements of plane strain tension, through visual observation.
This study aims to obtain a model of ferrite grain growth kinetics in the hot working of carbon steel by using a tensile testing machine. Initially the material was reheating to a temperature of 900oC, respectively and then deformed at temperatures 750oC, 800oC and 850oC, with strain rate 0.1/s. Cooling air was done after deformed. Hot tensile results showed the same grain growth tendency with the empirical model and capable to producing ultra-fine ferrite grains and nano grain. The ferrite grain growth kinetics model obtained from the modeling of the hot tensile test variables are in accordance with the results of observations with a standard error of ten per cent and under the other prediction models. The empirical equation model of the ferrite grains obtained in this study is To be more perfect model, it is necessary to validate the use of hot rolled to the conditions and parameters of the tensile test. From the results of validation, it can be observed that the hot tensile model results the different grain size and tendency from the results of hot rolled. However, the ferrite grain size and the tendency of hot rolled result can be approximated by using the plane strain hot tensile test through the formula. Given this formula, it is expected that the evolution of microstructure during hot rolled process can be observed in the laboratory which only has a tensile test machine.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
D1261
UI - Disertasi Open  Universitas Indonesia Library
cover
Caldarone, Michael A.
"Buku yang berjudul "High-strength concrete : a parctical guide" ini ditulis oleh Michael A. Caldarone. Buku ini merupakan sebuah buku panduan mengenai bahan-bahan kimia, yang disertai penjelasan dan contoh kasusnya."
New York: Taylor & Francis Group, 2009
R 620.136 CAL h
Buku Referensi  Universitas Indonesia Library
cover
Rini Riastuti
Fakultas Teknik Universitas Indonesia, 1993
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Muhammad Rafif Roid Shiddiq
"Bucket tooth pada alat berat excavator menggunakan baja High Strength Low Alloy sebagai material didasari oleh sifat-sifatnya. Perlakuan panas yang dilakukan pada baja HSLA adalah normalisasi, tempering, austenisasi, dan quenching, serta double tempering. Penemuan Delay Crack pada produk bucket tooth yang disebabkan oleh adanya austenit sisa pada komponen bucket tooth, austenite ini menimbulkan tegangan sisa di dalam produk. Meminimalisir jumlah austenite sisa serta keseragaman mikrostruktur adalah langkah yang tepat untuk mencegah Delay Crack. Penelitian ini berfokus pada kualifikasi kecepatan pendinginan media pendingin berupa air, air hangat, dan oli dan meneliti pengaruhnya terhadap struktur mikro dan kekerasan baja HSLA. Kecepatan pendinginan rata-rata yang paling tinggi secara berurutan adalah air, oli, dan air hangat, senilai 111,28 oC/s, 51.30 oC/s, 56.75 oC/s. Perbedaan kecepatan pendinginan akan menghasilkan struktur mikro baja HSLA yang berbeda. Fasa martensite terbentuk paling dominan pada setiap jenis media pendingin dengan sedikit austenite sisa yang kadarnya meningkat seiring dengan meningkatnya kecepatan pendinginan yaitu 0.8%, 2,4%, 3% . Kekerasan mikro menemukan fraksi area transformation zone keras akibat dikelilingi oleh martensite pada setiap baja, fasa lower bainite pada baja media pendingin air hangat, serta karbida pada baja media pendingin Air suhu kamar. Nilai kekerasan makro untuk tiap sampel meningkat seiring meningkatnya kecepatan pendinginan, yaitu secara berturut turut menjadi 49.1 HRC, 47.1 HRC, dan 44.3 HRC. Sehingga meningkatnya kecepatan pendinginan menyebabkan peningkatan kekerasan dan kadar austenite sisa. Beberapa temuan lainnya seperti dekarburisasi pada permukaan baja di analisis untuk mengetahui penyebab delay crack terjadi.

Excavator’s bucket tooth using High Strength Low Alloy Steel based material because of it’s properties. The heat treatment performed on HSLA steel is normalization, tempering, austenisation, and quenching, and the last double tempering. Delay Crack was discovered on bucket tooth products caused by the presence of retained austenite in the bucket tooth component, this austenite raises residual stresses in the product. Minimizing the amount of retained austenite and gaining microstructural uniformity is the right step to prevent Delay Crack. This research focuses on qualifying the cooling rate of quenching media in the form of water, hot water, and oil then examines their effects on the microstructure and hardness of HSLA steels. The highest average cooling speed, respectively, is water, oil and warm water, valued at 111.28 oC / s, 51.30 oC / s, 56.75 oC / s. The difference in cooling speed will produce a different HSLA steel microstructure. Martensite phase is formed dominantly in every quenching media variables with a little content of retained austenite whose levels increase with increasing cooling rate by 0.8%, 2.4%, 3%. Microhardness Testing found a hard zone named transformation zone fraction due to being surrounded by martensite in each variables, lower bainite phase in hot water variable, and carbide in water variable. The value of macro hardness for each sample increased with increasing cooling rate, which became 49.1 HRC, 47.1 HRC, and 44.3 HRC respectively. So that the increase in cooling rate causes an increase in hardness and residual austenite levels. Several other findings such as decarburization on the steel surface are analyzed to determine the cause of the delay crack.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Providing a comprehensive overview of hot stamping (also known as ‘press hardening’), this book examines all essential aspects of this innovative metal forming method, and explores its various uses. It investigates hot stamping from both technological and business perspectives, and outlines potential future developments. Individual chapters explore topics such as the history of hot stamping, the state of the art, materials and processes employed, and how hot stamping is currently being used in the automotive industry to create ultra-high-strength steel components. Drawing on experience and expertise gathered from academia and industry worldwide, the book offers an accessible resource for a broad readership including students, researchers, vehicle manufacturers and metal forming companies."
Switzerland: Springer Cham, 2019
e20502825
eBooks  Universitas Indonesia Library
cover
Taufiqullah
"Pada pengelasan baja, fenomena cold cracking atau retak dingin merupakan problem yang sangat signifikan. Fenomena ini sering terjadi setelah proses pengelasan selesai. Retak ini bisa terjadi pada daerah heat affected zone (HAZ) maupun pada logam las. Secara umum, cold cracking dapat diketahui dan dinyatakan sebagai hadirnya hidrogen dan tegangan pada struktur mikro yang sensitif terhadap retak pada kondisi temperatur di bawah 150oC. Proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi (high strength steel) dalam pembuatan komponen memiliki resiko yang cukup tinggi terhadap terjadinya fenomena cold cracking. Hal ini disebabkan adanya dua parameter yang saling mendukung yaitu pelat tebal dan baja paduan rendah untuk kemungkinan terbentuknya struktur mikro yang sensitif terhadap retak. Baja paduan rendah kekuatan tinggi memiliki sensitivitas terhadap retak relatif tinggi karena memiliki nilai karbon ekuivalen (CE) yang tinggi. Sedangkan pelat tebal, laju pendinginan pengelasan menjadi lebih cepat karena daya serap panas lebih besar jika dibanding dengan pelat tipis. Pengontrolan laju pendinginan menjadi faktor utama pada proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi untuk mendapatkan hasil lasan yang bebas dari cold cracking.
Dalam penelitian ini dilakukan pengontrolan laju pendinginan pada proses pengelasan baja HSLA dengan tebal 40mm dengan menggunakan media pendinginan udara, blanket dan heater electric. Proses pengelasan yang digunakan Gas Metal Arc Welding (GMAW) dengan parameter pengelasan mengikuti parameter yang tercantum pada standar.
Dari hasil penelitian menunjukkan bahwa cold cracking dapat dihindari dengan mengontrol waktu pendinginan pada temperatur rendah (T300- T100) agar lebih besar dari waktu pendinginan kritisnya. Penggunaan media pendinginan berupa electric heater dapat mencegah terjadinya cold cracking pada daerah HAZ lasan HSLA. Retak dapat terjadi karena adanya konsentrasi tegangan, variasi lokal kekerasan dan struktur mikro serta adanya patahan getas pada permukaan retak.

Cold cracking phenomenon is a very significant problem on steel weld. This phenomenon usually occurs after welding process finished. Crack often occurr on heat affected zone area. Generally, cold cracking is caused due to hydrogen diffuse during welding process and stress on micro structure which is susceptible to the crack at low temperature (under 150oC). Welding process on thick plate high strength low alloy steel has high risk to cold craacking phenomenon. The cooling rate of thick plate during welding will increase the absorbtion of heat compare to thin plate. On the other hand, high strength low alloy steel is susceptible to the crack due to high carbon equivalent (CE). Controlling cooling rate is the main factor on thick plate HSLA welding process in order to prevent cold cracking phenomenon.
This research will be done by controllong cooling rate on welding process of HSLA steel which have thickness of 40mm and using cooling media such as air, blancket and electric heater. Welding process is carried out by using Gas Metal Arc Welding (GMAW) with welding parameter as stated on the WPS.
The result showed that prevention of cold cracking can be done by controlling cooling time at low temperature (T300 - T100) in order to keep cooling time larger than critical cooling time. The use of cooling media with electric heater can prevent the cold cracking at the HAZ of HSLA weldment. Crack can be found on the weldment due to the present of stress concentration, local variation of hardness and micro structure and present of brittle fracture on the crack surface.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26790
UI - Tesis Open  Universitas Indonesia Library
cover
Taufiqullah
"ABSTRAK
Pada pengelasan baja, fenomena cold cracking atau retak dingin merupakan problem yang sangat signifikan. Fenomena ini sering terjadi setelah proses pengelasan selesai. Retak ini bisa terjadi pada daerah heat affected zone (HAZ) maupun pada logam las. Secara umum, cold cracking dapat diketahui dan dinyatakan sebagai hadirnya hidrogen dan tegangan pada struktur mikro yang sensitif terhadap retak pada kondisi temperatur di bawah 150oC. Proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi (high strength steel) dalam pembuatan komponen memiliki resiko yang cukup tinggi terhadap terjadinya fenomena cold cracking. Hal ini disebabkan adanya dua parameter yang saling mendukung yaitu pelat tebal dan baja paduan rendah untuk kemungkinan terbentuknya struktur mikro yang sensitif terhadap retak.
Baja paduan rendah kekuatan tinggi memiliki sensitivitas terhadap retak relatif tinggi karena memiliki nilai karbon ekuivalen (CE) yang tinggi. Sedangkan pelat tebal, laju pendinginan pengelasan menjadi lebih cepat karena daya serap panas lebih besar jika dibanding dengan pelat tipis. Pengontrolan laju pendinginan menjadi faktor utama pada proses pengelasan pelat tebal baja paduan rendah kekuatan tinggi untuk mendapatkan hasil lasan yang bebas dari cold cracking. Dalam penelitian ini dilakukan pengontrolan laju pendinginan pada proses pengelasan baja HSLA dengan tebal 40mm dengan menggunakan media pendinginan udara, blanket dan heater electric. Proses pengelasan yang digunakan Gas Metal Arc Welding (GMAW) dengan parameter pengelasan mengikuti parameter yang tercantum pada standar.
Dari hasil penelitian menunjukkan bahwa cold cracking dapat dihindari dengan mengontrol waktu pendinginan pada temperatur rendah (T300- T100) agar lebih besar dari waktu pendinginan kritisnya. Penggunaan media pendinginan berupa electric heater dapat mencegah terjadinya cold cracking pada daerah HAZ lasan HSLA. Retak dapat terjadi karena adanya konsentrasi tegangan, variasi lokal kekerasan dan struktur mikro serta adanya patahan getas pada permukaan retak.

ABSTRACT
Cold cracking phenomenon is a very significant problem on steel weld. This phenomenon usually occurs after welding process finished. Crack often occurr on heat affected zone area. Generally, cold cracking is caused due to hydrogen diffuse during welding process and stress on micro structure which is susceptible to the crack at low temperature (under 150oC). Welding process on thick plate high strength low alloy steel has high risk to cold craacking phenomenon.
The cooling rate of thick plate during welding will increase the absorbtion of heat compare to thin plate. On the other hand, high strength low alloy steel is susceptible to the crack due to high carbon equivalent (CE). Controlling cooling rate is the main factor on thick plate HSLA welding process in order to prevent cold cracking phenomenon. This research will be done by controllong cooling rate on welding process of HSLA steel which have thickness of 40mm and using cooling media such as air, blancket and electric heater. Welding process is carried out by using Gas Metal Arc Welding (GMAW) with welding parameter as stated on the WPS.
The result showed that prevention of cold cracking can be done by controlling cooling time at low temperature (T300 - T100) in order to keep cooling time larger than critical cooling time. The use of cooling media with electric heater can prevent the cold cracking at the HAZ of HSLA weldment. Crack can be found on the weldment due to the present of stress concentration, local variation of hardness and micro structure and present of brittle fracture on the crack surface.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26011
UI - Tesis Open  Universitas Indonesia Library
cover
Gigih Adicita Wijaya
"ABSTRAK
Pemerintah Republik Indonesia telah mencanangkan program populasi mobil hybrid sebesar 711.900 unit pada tahun 2025 dan pada tahun 2050 mencapai 8,05 juta unit. Sedangkan mobil listrik dengan menggunakan baterai sebanyak 4,2 juta unit di tahun 2050 yang produksinya ditargetkan pemerintah mulai tahun 2025. Untuk mendukung program pemerintah ini maka, industri produsen mobil di Indonesia harus mengaplikasikan beberapa teknologi baru yang menunjang mobil listrik. Salah satu dari teknologi yang harus diterapkan adalah struktur ringan yang dalam aplikasinya bisa menggunakan baja atau resin. Secara umum High Strength Steel (HSS) adalah material terbaik untuk aplikasi struktur ringan. Namun aplikasi HSS ini menimbulkan beberapa perubahan proses produksi yang mengakibatkan adanya peningkatan kebutuhan pada proses penyetakan, pengelasan dan compressor. Dari 3 manufaktur yang diambil data konsumsi listriknya didapatkan peningkatan 11 hingga 14 persen dengan rata-rata 13 persen per unit mobil. Hasil ini kemudian digabungkan dengan prediksi produksi mobil berdasarkan tren dari tahun 2003 hingga 2016 didapatkan peningkatan pada tahun 2040 sebesar 208 dengan kontribusi penggunaan struktur ringan sebesar 14. Kebutuhan listrik inilah yang harus disediakan oleh pemerintah agar program ini bisa berjalan dengan baik.

ABSTRACT
The Government of the Republic of Indonesia has launched a hybrid car population program of 711,900 units in 2025 and in 2050 reached 8.05 million units. Whereas electric cars use 4.2 million units in 2050 whose production is targeted by the government starting in 2025. To support this government program, the car manufacturer industry in Indonesia must apply several new technologies that support electric cars. One of the technologies that must be applied is a light structure which can use steel or resin in its application. In general, High Strength Steel (HSS) is the best material for lightweight structural applications. But this HSS application raises several changes in the production process which results in an increase in the need for the process of printing, welding and compressors. Of the 3 manufactures whose electricity consumption data was obtained, an increase of 11 to 14 percent with an average of 13 percent per unit of car. These results are then combined with the prediction of car production based on trends from 2003 to 2016, an increase in 2040 by 208 with a contribution to the use of light structures of 14. This electricity need must be provided by the government so that this program can run well.
"
2019
T55175
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>