Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Ananda Hinsa Marintan
"Saat ini penggunaan bahan bakar fosil sedemikian besarnya dan permintaan energi terus meningkat, namun keterbatasan bahan bakar fosil, dampak lingkungan yang dihasilkan dari pembakaan bahan bakar fosil, pengembangan teknologi penghasil energi yang bersih dan berkelanjutan menjadi sangat penting. Hidrogen adalah salah satu energi yang potensial untuk pengganti bahan bakar fosil dan merupakan energi alternatif untuk masa depan, karena ramah lingkungan dan dapat menghasilkan enenrgi yang cukup besar. Reaksi evolusi hidrogen dengan teknik elektrolisis AWE (alkaline water electrolysis) merupakan teknik yang populer saat ini untuk menghasilkan hydrogen. Penelitian ini telah berhasil mensintesis MoS2 dan komposit MoS2/Ag, serta telah dikarakterisasi dengan FTIR, XRD, FESEM, dan TEM. Fabrikasi elektroda GCE/MoS2/Ag dan uji aktivitas elektrokatalitiknya menggunakan teknik LSV, ECSA, dan CV, juga telah dilakukan. Melalui hasil pengujian Linear Sweep Voltammetry (LSV) diperoleh bahwa komposit MoS2/Ag memiliki nilai onset dan overpotensial yang paling mendekati Pt wire sebagai benchmark, yaitu 123 mV dan 253 mV. Hal ini membuktikan bahwa dekorasi MoS2 dengan Ag sudah berhasil untuk meningkatkan aktivitas katalitik dan konduktivitasnya. Melalui uji Electrochemically Active Surface Area (ECSA) diperoleh luas permukaan aktif yang paling tinggi pada nanokomposit MoS2/Ag. Berdasarkan uji kronoamperometri diketahui MoS2/Ag selama 9000 detik menghasilkan komposit yang cukup stabil sebagai elektrokatalis reaksi evolusi hidrogen.

Currently, the use of fossil fuels is so enormous, and the demand for energy continues to increase. But the limitations of fossil fuels, the environmental impact resulting from burning fossil fuels, and the development of clean and sustainable energy-producing technologies are very important. Hydrogen is a potential energy to replace fossil fuels and is an alternative energy for the future because it is environmentally friendly and can produce quite a large amount of energy. Hydrogen evolution reaction with the AWE electrolysis technique (alkaline water electrolysis) is a popular technique today to produce hydrogen. This research has succeeded in synthesizing MoS2 and MoS2/Ag composites and have characterized by FTIR, XRD, FESEM, and TEM. GCE/MoS2/Ag electrode fabrication and electrocatalytic activity tests using LSV, ECSA, and CV techniques have also carried out. Through the LSV test results, it was found that the MoS2/Ag composite had onset and overpotential values closest to Pt wire as a benchmark, namely 123 mV and 253 mV. Prove that decorating MoS2 with Ag has succeeded in increasing its catalytic activity and conductivity. Through the Electrochemically Active Surface Area (ECSA) test, the highest active surface area was obtained on the MoS2/Ag composite. Based on the chronoamperometric test, it is known that MoS2/Ag for 9000 seconds produces a fairly stable composite as an electrocatalyst for the hydrogen evolution reaction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Khotib
"Elektrokatalis OER merupakan komponen penting dalam penyimpanan energi, konversi energi, dan elektrolisis air. Penelitian ini bertujuan untuk mendapat elektrokatalis berbasis BaFe12O19 (BHF) dan BaTiO3(BTO) terdoping nikel dengan komposit polianilina. Material elektrokatalis BaFe12O19 terdoping Ni dibuat melalui teknik kopresipitasi pada suhu 4oC dengan suhu sintering 750oC. Material BaTiO3 terdoping Ni dibuat melalui teknik sinter berbantuan hidrotermal tekanan rendah. Komposit BHF dengan polianilina (PANI) dan BTO dengan polianilina dilakukan dengan teknik polimerisasi in situ.
Berdasarkan pengukuran XRD, diperoleh BHF fase tunggal dan ada pengotor Fe2O3 pada BHF terdoping Ni (BHFNi) dan kompositnya dengan PANI. Doping Ni dan komposit PANI meningkatkan volume unit sel dari BHF. BTO fase tunggal diperoleh pada suhu sinter 800oC selama 2 jam, sedangkan pada BTO doping Ni terdapat fase BaCO3 dan pada komposit PANI terdapat pengotor BaSO4. Kinerja elektrokatalis Oxygen Evolution Reaction (OER) dalam medium NaOH meningkat dengan adanya doping Ni dan komposit polianilina pada BHF dan BTO. Campuran BHFNi-BTONi-PANI (25:75) menunjukkan kinerja elektrokatalis OER terbaik dalam medium NaOH berdasarkan parameter nilai densitas arus dan potensial berlebihnya. Sistem redoks Ni3+/2+, Fe4+/3+, Ti4+/3+ dan sistem lokalisasi elektron dalam PANI menjadi faktor yang mempengaruhi kinerja OER yang baik.

Oxygen Evolution Reaction (OER) electrocatalyst is an important component in energy storage, energy conversion and electrolysis of water. This study was aimed to obtain oxygen evolution reaction electrocatalyst based on BaFe12O19 (BHF), BaTiO3 (BTO), Ni-doped BaFe12O19 (BHFNi), and Ni-doped BaTiO3 (BTONi), and its composite with polyaniline. Electrocatalyst of BHF and BHFNi were synthesized by co-precipitation at 4oC with sintering temperature of 750oC. BTO and BTONi were prepared through a low pressure hydrothermal assisted sintering technique. the polyaniline composites were carried out by in situ polymerization at 0-4oC. A single phase BHF was obtained on undoped BHF, and Fe2O3 impurities were presence on BHFNi and its composite with PANI. Ni doping decrease on cell unit volume of BHF, while PANI composite increases cell unit volume of BHF. Single phase BTO was obtained through sintering at 800oC during 2 hours, while BaCO3 phase was appeared on Ni-doped BTO and BaSO4 was appeared on its PANI composite.
Based on overpotential and charge transfer coefficient, BHF and BTO performances as OER electrocatalytic in the NaOH medium were increased with present nickel and composite of polyaniline. The mixture of BHFNiPANI-BTONiPANI (25:75) shows the best performance of OER electrocatalyst in NaOH medium based on the parameters of current density and overpotential. The Ni3+/2+, Fe4+/3+, Ti4+/3+ redox systems and the electron localization system in PANI are factors that influence the good performance of there OER electrocatalysts
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
D2682
UI - Disertasi Membership  Universitas Indonesia Library
cover
Yulia Mariana Tesa Ayudia Putri
"ABSTRAK
Kebutuhan akan listrik di Indonesia semakin meningkat, sementara bahan bakar fosil, yang selama ini menjadi sumber energi utama semakin menipis setiap tahunnya. Sumber energi pengganti yang lebih ramah lingkungan serta efisien sangat diperlukan. Fuel cell dapat mengkonversi energi kimia menjadi listrik, panas, dan air. Urea yang terdapat dalam urin merupakan salah satu komponen yang bisa digunakan sebagai bahan bakar fuel cell. Pada urea terdapat ikatan nitrogen-hidrogen yang mudah diputuskan dan menghasilkan dua molekul gas hidrogen. Apabila gas hidrogen tersebut dilepaskan maka akan menghasilkan listrik. Pada penelitian ini boron-doped diamond BDD termodifikasi dengan Nikel-Kobalt digunakan sebagai elektroda untuk produksi energi listrik dalam fuel cell. Modifikasi BDD dilakukan dengan teknik elektrodeposisi menggunakan 40 mM larutan Ni NO3 2 dan CoCl2 dengan perbandingan 4:1. Hasil pengukuran menunjukkan bahwa densitas daya sebesar 0,1429 mW cm-1 dapat diperoleh selama satu jam pengukuran dalam suhu ruang. Hasil tersebut didapatkan ketika digunakan urea 0,33 mol L-1 dan KOH mol L-1 pada ruang anoda dan H2O2 2 mol L-1 dalam H2SO4 2 mol L-1 pada ruang katoda. Dengan menggunakan kondisi yang sama, pengujian urin sebagai pengganti urea pada ruang anoda menghasilkan daya sebesar 0,0003 mW cm-1.
"
"
"ABSTRACT
"
The need for electricity in Indonesia is increasing while fossil fuels, which have been the main source of energy, are depleting every year. Therefore it is necessary to find another energy sources that are more environmentally friendly and efficient. Fuel cells can convert chemical energy into electricity, heat, and water. Urea contained in urine is one component that can be used as fuel fuel cell. In urea there is an easy to devide nitrogen hydrogen bond, which produces two molecules of hydrogen gas. When the hydrogen gas is released it will generate electricity. In this study, nickel cobalt modified BDD was employed as an electrode to produce electrical energy in the fuel cell. The modification was performed by electrodeposition using 40 mM Ni NO3 2 and CoCl2 solutions in a ratio of 4 1. The power density of 0.1429 mW cm 1 in one hour measurement at a room temperature. The results were obtained when 0.33 mol L 1 urea in 2 mol L 1 KOH was used as a fuel in in the anode chamber, while 2 mol L 1 H2O2 in 2 mol L 1 H2SO4 was used in the cathode chamber. Replacing of urea with urine in the anodic chamber produces a power of 0.0003 mW cm 1."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Safira Razak
"Elektrokatalitik water splitting diketahui merupakan teknologi yang menjanjikan untuk produksi hidrogen dan oksigen yang menyediakan energi bersih yang terjangkau dan mengurangi ketergantungan pada bahan bakar fosil. Elektrokatalis digunakan untuk meningkatkan laju reaksi elektrokimia reaksi evolusi hidrogen (HER) dan reaksi evolusi oksigen (OER). Dibandingkan dengan logam mulia lain, Platinum (Pt) merupakan elektrokatalis HER yang paling efisien dan stabil dalam elektrolit asam atau basa. Studi literatur menunjukkan efisiensi elektrokatalitik dari bahan platinum berstruktur nano sangat dipengaruhi oleh bentuk, ukuran, dan bidang kristal permukaannya. Untuk itu dalam penelitian ini dilakukan sintesis partikel Pt diatas substrat ITO dengan metode elektrodeposisi mode Square-Wave Pulse (SWP) dengan variasi larutan elektrolit dengan KCl dan KCl + H2SO4 untuk mendapatkan bentuk dan bidang kristal tertentu di permukaan. Hasil penelitian menunjukkan bahwa pertumbuhan partikel Pt dipegaruhi oleh adanya ion-ion elektrolit asam sulfat (H2SO4), yaitu HSO4- dan SO42- yang mendorong pembentukan partikel anisotropik, yaitu berbentuk bulat dengan duri runcing yang berbentuk seperti kelopak bunga (flower-like). Sedangkan elektrolit KCl saja hanya menghasilkan partikel Pt dengan kecenderungan berbentuk bulat (sphere). Pt MF menunjukkan kinerja katalitik HER yang lebih baik dimana overpotential dan kemiringan yang lebih rendah daripada Pt MS. Hal tersebut mungkin disebabkan adanya bidang berindeks tinggi yaitu bidang (220) dan (311) pada Pt MF yang berkerja sebagai situs aktif yang dapat memutus rantai ikatan senyawa. Sedangkan Pt MS dominan memiliki bidang kristal (100) dan (002) yang lebih baik untuk meningkatkan aktivitas katalitik OER.
Electrocatalytic water splitting is considered as a promising technology for the production of hydrogen as affordable clean energy and reduces dependence on fossil fuels. Electrocatalysts used to increase the electrokinetics reaction of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared to other noble metals materials, Platinum (Pt) is the most efficient and stable HER electrocatalyst in acid or alkaline electrolytes. Literature studies show the electrocatalytic efficiency of nanostructured Pt influenced by the shape, size, and surface crystal facets. For this reason, this research carried out the synthesis of Pt particles on the ITO-coated glass substrate using the Square-Wave Pulse (SWP) mode electrodeposition method with two variations in the electrolyte solution, namely KCl and KCl + H2SO4 to obtain certain crystal facets on the surface. The results show that the growth of Pt particles was affected by the presence of sulfuric acid electrolyte ions (HSO4- and SO42-) promoting the formation of anisotropic particles, which is flower-like particles, while the single electrolytes KCl only produces Pt particles with a spherical shape. Pt MFs shows a better catalytic performance of HER, where overpotential and slope are lower than Pt MSs. That might be due to high index facets (220) and (311), which work as active sites that can break the bonding chains of compounds. Meanwhile, the crystal facets of Pt MSs are dominated by (100) and (002) facets which are better for the catalytic activity of OER."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andien Salsabila Ramdhaniati
"Bahan bakar hidrogen merupakan salah satu sumber energi baru dan terbarukan yang menarik perhatian karena memiliki kepadatan energi yang tinggi. Reaksi evolusi hidrogen merupakan teknik paling sederhana yang dapat digunakan untuk menghasilkan hidrogen sebagai salah satu sumber energi alternatif. Pengembangan material terus dilakukan agar dapat memperoleh kinerja reaksi evolusi hidrogen yang efektif dan efisien. Pada penelitian ini, dilakukan dekorasi multi-walled carbon nanotubes (MWCNT) dengan nanopartikel AuAg menggunakan metode direct borohydride reduction, yang akan digunakan sebagai elektrokatalis pada reaksi evolusi hidrogen, Keberhasilan dan kemurnian dari dekorasi nanopartikel AuAg terhadap MWCNT telah dianalisis melalui karakterisasi XRD, Spektroskopi UV-Vis, dan Spektroskopi Raman. Komposit AuAg/MWCNT, Au/MWCNT, Ag/MWCNT dan f-MWCNT yang telah dipreparasi akan ditambatkan pada elektroda glassy carbon melalui metode drop casting. Nilai overpotensial yang didapatkan dari elektroda GCE/AuAg/MWCNT, GCE/Au/MWCNT, GCE/Ag/MWCNT, GCE/MWCNT, dan bare GCE berturut-turut adalah -0,47 V; -0,63V; -0,50 V; -0,64 V dan -0,96 V yang membuktikan bahwa dekorasi MWCNT dengan nanopartikel AuAg berhasil meningkatkan kinerja sebagai elektrokatalis pada reaksi evolusi hidrogen dengan menurunkan nilai overpotensial. Selain itu, dari pengujian ECSA diketahui bahwa luas permukaan aktif dari elektroda GCE/AuAg/MWCNT adalah 0,1665 cm-2, jauh lebih besar jika dibandingkan dengan GCE/Au/MWCNT (0,0353 cm- 2), GCE/Ag/MWCNT (0,020 cm-2), GCE/MWCNT (0,0067 cm-2) dan bare GCE (0,0033 cm-2). Sifat konduktivitas dan kestabilan elektroda GCE/AuAg/MWCNT juga berhasil dibuktikan dari analisis EIS dan uji stabilitas elektroda melalui metode kronoamperometri. Selain itu, seluruh komposit dilakukan karakterisasi dengan menggunakan Fourier Transform Infra-Red (FTIR), Spektroskopi Raman, X-ray diffraction (XRD), Spektroskopi UV-Vis, dan transmission electron microscopy (TEM).

Hydrogen fuel currently gaining popularity as a renewable source due to its higher energy density. Hydrogen evolution reaction is the simplest and most effective method to produce hydrogen as a source of alternative energy with zero emission of CO2. Material development continues to be carried out to obtain an effective and efficient hydrogen evolution reaction performance. In this research, a direct borohydride reduction process was utilized to decorate multi-walled carbon nanotubes (MWCNT) with AuAg nanoparticles, which would be used as an electrocatalyst in the hydrogen evolution reaction. The prepared AuAg/MWCNT, Au/MWCNT, Ag/MWCNT, and f-MWCNT composites will be anchored to the glassy carbon electrode by a drop-casting method. The overpotential values obtained from the GCE/AuAg/MWCNT, GCE/Au/MWCNT, GCE/Ag/MWCNT, GCE/MWCNT, and bare GCE electrodes were -0.47 V; -0.63V; - 0.50 V; -0.64 V and -0.96 V which proved that the decoration of MWCNT with AuAg nanoparticles succeeded in increasing the performance as an electrocatalyst in the hydrogen evolution reaction by reducing the overpotential value. In addition, from the ECSA test it is known that the active surface area of the GCE/AuAg/MWCNT electrode is 0.1665 cm-2, much larger than that with GCE/Au/MWCNT (0.0353 cm-2), GCE/Ag/MWCNT (0.020 cm-2), GCE/MWCNT (0.0067 cm-2) and bare GCE (0.0033 cm- 2). The conductivity and stability of the GCE/AuAg/MWCNT electrodes were also proven from the EIS analysis and the electrode resistance test using the chronoamperometric method. All the composites were also characterized using Fourier Transform Infra-Red (FTIR), Raman Spectrophotometer, X-Ray Diffraction (XRD), UV-VIS Spectrophotometry, and Transmission Electron Microscopy (TEM)."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library