Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Jeffry Marselie
"Material Seng Oksida ( ZnO) adalah salah satu material semikonduktor yang sedang banyak diteliti yang banyak diaplikasikan pada devais optoelektronik dan aplikasi fotokatalitik. Material ZnO dapat diubah sifatnya melalui penambahan doping. Dalam penelitian ini, nanorod ZnO disintesis dengan lima variasi doping Cu (0%, 1%, 4%, 7% dan 10%) melalui 2 tahap yaitu tahap deposisi lapisan benih di atas subtrat indium tin oxide (ITO) menggunakan metode ultrasonic spray pyrolisis dan tahap penumbuhan nanorod ZnO menggunakan metode hidrotermal. Karakterisasi nanorod ZnO meliputi morfologi permukaan oleh scanning electron microscopy (SEM), struktur kristal oleh x-ray diffraction (XRD), dan sifat optik oleh ultraviolet-visible spectroscopy (UV-Vis) dan fotoluminisen (PL).
Hasil penelitian menunjukkan bahwa nanorod ZnO ditumbuhkan dengan bentuk hexagonal dan orientasi tumbuh beragam. Umumnya penambahan doping Cu menyebabkan peningkatan densitas, penurunan diameter, penurunan parameter kisi dan volume kristal nanorod ZnO. Penambahan konsentrasi doping Cu menurunkan absorbansi pada daerah panjang gelombang ultraviolet, meningkatkan nilai bandgap dan menurunkan puncak luminisensi di daerah ultra violet dan cahaya tampak. Dari hasil ini penulis menyimpulkan bahwa penambahan Cu sebesar 4 % pada struktur nanorod ZnO paling optimal untuk aplikasi devais optoelektronik dan fotokatalisis karena tingginya absorbansi di daerah ultraviolet dan rendahnya cacat yang terbentuk.

Material Zinc Oxide (ZnO) is a semiconductor material that has been researched widely for optoelectronic devices and photocatalytic applications. The characteristic ZnO material can be changed by the addition of doping. In this study, the nanorod ZnO were synthesized with five variations of doping Cu (0%, 1%, 4%, 7% and 10%) through two phases: the deposition of seed layer over a substrate of indium tin oxide (ITO) using ultrasonic spray pyrolisis and the growth of ZnO nanorod using hydrothermal method. The characterization of ZnO nanorod include surface morphology by scanning electron microscopy (SEM), the crystal structure by x-ray diffraction (XRD), and optical properties by ultraviolet-visible (UV-Vis) and photoluminisence (PL) spectroscopy.
The results showed that ZnO nanorod were grown with a hexagonal shape with diverse growth orientation. Generally, the addition of Cu doping led to an increase in density, diameter reduction, a decrease in the lattice parameter and crystal volume of ZnO nanorod. The addition of Cu doping also decreases the absorbance at ultraviolet wavelength region, increasing the band gap and reducing luminesence peak in the region of ultraviolet and visible light. From these results the author concluded that the addition of 4% Cu on ZnO nanorod stucture is the most optimal for optoelectronic devices and photocatalytic applications due to the high absorbance in the ultraviolet region and the low defects are formed.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65500
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajria Azzahra Maharani
"Bahan interkoneksi solid oxide fuel cell (SOFC) yang paling unggul adalah baja tahan karat feritik (ferritic stainless steel). Namun, terdapat masalah dalam penggunaan baja tahan karat feritik sebagai bahan interkoneksi, yaitu terbentuknya lapisan Cr2O3 yang akan menghasilkan spesies gas Cr(VI), di mana ini akan menurunkan kinerja SOFC. Untuk mengatasi masalah tersebut, dibutuhkan lapisan pelindung spinel berbahan NiFe untuk menekan pertumbuhan Cr2O3. Penelitian ini membahas pembentukan fasa spinel dan oksida dari lapisan NiFe dan NiFeCu yang dibentuk dengan proses mechanical alloying paduan lapisan, spark plasma sintering (SPS), perlakuan panas, dan oksidasi. Pembentukan fasa dan struktur kristal diamati dengan x-ray diffraction (XRD). Struktur mikro diamati menggunakan scanning electron microscope dan electron dispersive x-ray (SEM-EDX). Setelah proses SPS, dihasilkan beberapa fasa dari XRD diantaranya Fe-Cr, Fe-Ni pada lapisan NiFe, Fe-Ni-Cu pada lapisan NiFeCu serta beberapa fasa oksida (FeO dan Fe3O4). Fasa oksida terbentuk akibat proses mechanical alloying dilakukan dalam keadaan tidak vakum dan penggunaan temperatur tinggi pada SPS mendorong terjadinya oksidasi. Perlakuan panas atau heat treatment meningkatkan tingkat kompaksi antara substrat dan pelapis pada sampel sebelum dioksidasi. Doping Cu mampu meningkatkan kerapatan fasa Fe-Ni(-Cu) atau area terang pada paduan di lapisan. Fasa spinel Fe2NiO4 terbentuk setelah uji oksidasi pada temperatur 800C selama 100 jam, diikuti dengan fasa Fe2O3. Perlakuan panas dan doping Cu menghasilkan lapisan oksida Fe2O3/Fe3O4 pada lebih merata dan seragam. Perlakuan panas dapat meningkatkan resistansi oksidasi lapisan NiFeCu setelah oksidasi, ditandai dengan adanya pori pada lapisan oksida yang dihasilkan.

The most superior solid oxide fuel cell (SOFC) interconnect material is ferritic stainless steel. However, there is a problem in using ferritic stainless steel as an interconnection material, namely the formation of a layer of Cr2O3 which will produce Cr(VI) gas species, which will reduce SOFC performance. To overcome this problem, a protective layer of spinel made from NiFe is needed to suppress the growth of Cr2O3. This research discusses the formation of spinel and oxide phases from NiFe and NiFeCu layers formed by mechanical alloying of coating alloys, spark plasma sintering (SPS), heat treatment, and oxidation. Phase formation and crystal structure were observed by x-ray diffraction (XRD). The microstructure was observed using a scanning electron microscope and electron dispersive x-ray (SEM-EDX). After the SPS process, several phases were produced from XRD including Fe-Cr, Fe-Ni in the NiFe layer, Fe-Ni-Cu in the NiFeCu layer and several oxide phases (FeO and Fe3O4). The oxide phase is formed as a result of the mechanical alloying process carried out in a non-vacuum state and the use of high temperatures in SPS encourages oxidation. Heat treatment increases the degree of compaction between the substrate and the coating on the sample prior to oxidation. Cu doping can increase the density of the Fe-Ni(-Cu) phase or the bright area of ​​the alloy in the coating. The Fe2NiO4 spinel phase was formed after an oxidation test at 800°C for 100 hours, followed by the Fe2O3 phase. Heat treatment and Cu doping resulted in a more even and uniform layer of Fe2O3/Fe3O4 oxide on it. Heat treatment can increase the oxidation resistance of the NiFeCu layer after oxidation, indicated by the presence of pores in the resulting oxide layer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library