Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Naufal Haq Dja`far
"Penggunaan baja High Strength Low Alloy telah menjadi hal yang umum di kalangan industri khususnya produsen alat berat. Baja HSLA ini digunakan sebagai material bucket tooth yang merupakan salah satu komponen pada excavator. Proses pembuatan bucket tooth melalui beberapa tahapan proses perlakuan panas mulai dari hasil pengecoran, yaitu normalisasi, pre-tempering, austenisasi, quenching, dan double tempering. Proses perlakuan panas tersebut masih menunjukkan adanya austenit sisa yang cukup untuk menyebabkan terjadinya fenomena delay crack akibat austenit sisa yang bertransformasi dan menimbulkan tegangan pada bucket tooth. Penelitian ini akan berfokus pada penurunan angka austenit sisa dengan salah satu metode pendinginan yaitu subzero treatment dan melihat pengaruhnya terhadap struktur mikro serta sifat mekanis pada baja HSLA. Perlakuan subzero dilakukan setelah proses quenching. Perlakuan subzero dilakukan dengan mendinginkan baja hingga temperatur -176oC, setelahnya akan dilanjutkan proses perlakuan panas yaitu double tempering. Penelitian ini akan membandingkan hasil perlakuan as-quenched dengan as-subzero dan as-QTT dengan as-QSTT sehingga akan didapatkan perbedaan struktur mikro serta sifat mekanis dari perlakuan panas konvensional dengan perlakuan subzero. Hasil penelitian ini mendapatkan penurunan jumlah austenite sisa 6,8% menjadi 3,9% pada as-quenched dengan as-subzero dan 2,7% menjadi 1,2% pada as-QTT dengan as-QSTT. Selain itu terjadi peningkatan sifat mekanis yaitu kekerasan dari 48,22 HRC atau 480 HV menjadi 48,8 HRC atau 490 HV pada produk jadi atau setelah as-QTT dan as-QSTT. Sehingga, penurunan jumlah austenite sisa dan peningkatan sifat mekanis yaitu kekerasan dapat dilakukan dengan perlakuan subzero.

The use of High Strength Low Alloy steel has become common in the industry, especially heavy equipment manufacturers. HSLA steel is used as a bucket tooth material which is one of the components in an excavator. The process of making bucket tooth goes through several stages of the heat treatment process starting from the casting results, in order normalization, pre-tempering, austenization, quenching, and double tempering. The heat treatment process still shows the presence of retained austenite which is enough to cause the phenomenon of delay crack due to retained austenite that is transformed and causes stress to the bucket tooth. This research will focus on decreasing the amount of retained austenite by one of the cooling methods namely subzero treatment and seeing its effect on the microstructure and mechanical properties of HSLA steel. Subzero treatment is carried out after the quenching process. Subzero treatment is done by cooling the steel to a temperature of -176oC, after which the heat treatment process will be continued, which is double tempering. This study will compare the results of as-quenched treatment with as-subzero and as-QTT with as-QSTT so that microstructure and mechanical properties of conventional heat treatment with subzero treatment will be obtained. The results of this study show a decrease in the amount of retained austenite from 6,8% to 3,9% in as-quenched with as-subzero, and 2,7% to 1,2% in as-QTT with as-QSTT. Also, there was an increase in mechanical properties which is hardness from 48,22 HRC or 480 HV to 48,8 HRC or 490 HV in the finished product or after as-QTT and as-QSTT. Thus, decreasing the amount of retained austenite and increasing mechanical properties which is hardness can be done by the subzero treatment."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dino Adipradana Darwanto Haroen
"

High-strength low alloy steel atau biasa disebut baja HSLA merupakan material yang digunakan untuk komponen excavator bucket tooth pada industri alat berat. Komponen ini diproduksi di Indonesia tanpa adanya kegagalan pada produk, namun ketika diekspor ke luar negeri, produk mengalami retak yang diindikasikan sebagai delayed crack. Penelitian sebelumnya menyatakan bahwa delayed crack ini terjadi akibat hadirnya austenit sisa yang merupakan fasa metastabil dan dapat bertransformasi secara isotermal menjadi fasa lain serta menghasilkan tegangan sisa sehingga berujung pada inisiasi retak. Penelitian ini memfokuskan pada metode untuk mengurangi jumlah austenit sisa dengan memvariasikan waktu tempering pada perlakuan double tempering (QTT). Namun, nilai kekerasan akhir juga dipertimbangkan pada penelitian ini agar sesuai pada standar komponen industri alat berat. Temperatur tempering yang digunakan adalah 205°C dan waktu tempering yang digunakan adalah 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), dan 107 menit x 2 (t4). Perlakuan tempering dapat secara efektif menurunkan jumlah austenit sisa karena ketika tempering austenit sisa akan terdekomposisi menjadi fasa lain. Selama perlakuan tempering juga, martensit akan terdekomposisi menjadi tempered martensite sehingga kehilangan sebagian atom karbonnya (loss of tetragonality) dan menjadi lebih lunak. Karakterisasi yang dilakukan pada penelitian ini adalah OM, SEM, Image-J (image analyzer), microvickers (kekerasan mikro), dan Rockwell C (kekerasan makro). Setelah dianalisis, penelitian ini mendapatkan hasil mikrostruktur berupa martensit (fresh martensite & tempered martensite), bainit (lower bainite), dan austenit sisa. Ditemukan pula karbida transisi pada bilah-bilah martensit. Ukuran fasa martensit (panjang bilah/jarum) tidak mengalami perubahan yang signifikan (cenderung seragam) seiring peningkatan waktu tempering. Peningkatan waktu tempering memengaruhi jumlah austenit sisa yang mengalami penurunan dan jumlah tempered martensite meningkat. Jumlah austenit sisa seiring peningkatan variabel waktu tempering mengalami penurunan dari 2.88%, 1.93%, 1.15%, dan 0.65%. Sementara itu, nilai kekerasan yang dihasilkan seiring meningkatnya waktu tempering adalah 49.43 HRC, 48.21 HRC, 47.78 HRC, dan 46.93 HRC dimana nilai kekerasan mengalami penurunan yang tidak signifikan. Maka, peningkatan waktu tempering dari 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), hingga 107 menit x 2 (t4) akan menurunkan potensi terjadinya delayed crack karena jumlah austenit sisa dapat berkurang, namun tetap memiliki nilai kekerasan yang baik.


The high-strength low alloy steel or commonly called HSLA steel is a material used for bucket tooth excavator components in the heavy equipment industry. This component was produced in Indonesia without product failure, but when exported abroad, the product experienced cracks which was indicated as delayed crack. Previous studies have suggested that this delayed crack occurred due to the presence of retained austenite which is a metastable phase and can be transformed isothermally into another phase and produces residual stress resulting in crack initiation. This study focuses on methods to reduce the amount of retained austenite by varying the tempering time in the double tempering (as-QTT) treatment. However, the final hardness value was also considered in this study to fit the heavy equipment industry component standard. The tempering temperature was 205°C and the tempering time was 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), and 107 minutes x 2 (t4). The tempering treatment can effectively reduce the amount of residual austenite because when tempering the retained austenite will decompose into another phase. During tempering too, martensite will decompose into tempered martensite so that it loses some of its carbon atoms (loss of tetragonality) and becomes softer. The characterizations carried out in this study are OM, SEM, Image-J (image analyzer), microvickers (micro hardness), and Rockwell C (macro hardness). After being analyzed, this study obtained the results of microstructure in the form of martensite (fresh martensite & tempered martensite), bainite (lower bainite), and retained austenite. Also found transition carbides on martensite laths. The size of the martensitic phase (length of the lath/needle) does not change significantly (tends to be uniform) with increasing tempering time. An increase in tempering time affects the amount of retained austenite that has decreased and the amount of tempered martensite increases. The amount of retained austenite with increasing tempering time variables decreased from 2.88%, 1.93%, 1.15%, to 0.65%. Meanwhile, the value of hardness produced with increasing tempering time was 49.43 HRC, 48.21 HRC, 47.78 HRC, and 46.93 HRC where the value of hardness experienced an insignificant decrease. Thus, increasing the tempering time from 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), until 107 minutes x 2 (t4) will reduce the potential for delayed cracks to occur because the amount of retained austenite can be reduced, but still has a good hardness value.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfian Dwiki Noer Ramadhan
"Penelitian ini didasari adanya masalah crack pada produk bucket tooth yang menggunakan material baja HSLA di industri alat berat setelah 2 bulan pengiriman ke pelanggan(delayed crack). Penelitian sebelumnya mengemukakan bahwa delayed crack ini diduga akibat adanya austenite sisa yang bersifat metastabil. Austenite sisa dapat bertransformasi menjadi martensite sehingga terjadi peningkatan volume dan tegangan internal yang menyebabkan delayed crack. Penelitian ini berfokus mengurangi austenite sisa dengan variasi suhu tempering. Suhu temper yang digunakan adalah 155°C, 205°C, 255°C, dan 305°C Mikrostruktur menunjukkan adanya transformation zone yaitu daerah dimana transformasi fasa yang terjadi belum sempurna. Hasil dari penelitian ini menunjukkan jumlah austenite sisa dan nilai kekerasan menurun ketika suhu temper dinaikkan.

This research is based on the problem of crack on bucket tooth products using HSLA steel material in heavy equipment industry after 2 months of delivery to customers (delayed crack). Previous studies have suggested that the delayed crack is thought to be due to metastable retained austenite. The retained austenite can be transformed into martensite which causes an increase in internal volume and stress resulting in delayed crack. This research focuses on reducing retained austenite with variations in tempering temperature. Tempering temperatures used were 155°C, 205°C, 255°C, and 305°C. Microstructure shows that there is a transformation zone, which is an area where phase transformation is not yet perfect. The results of this study indicate the amount of remaining austenite and the value of hardness decreases when the temper temperature is raised."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library