Using qualitative methods, data collection was carried out through interviews, direct queries and document study. Assessment of the current data quality uses data quality dimensions from Loshin and PermenristekDikti RI Number 61 of 2016 Article 12, assessment of the maturity level of data quality management using Loshin's Data Quality Maturity Model. The assessment results in: findings of problems causes and findings of management gaps. Further analysis was carried out to produce strategic recommendations, firstly through mapping DMBOK2 common problems causes; a strategy for improving data quality conditions was formed. Secondly, through mapping of DMBOK2 best practice data quality management activities combined with Loshin’s data quality strategy points of consideration, a data quality management improvement strategy was formed. Broadly speaking, the proposed strategy suggests corrections of data structures and application interfaces, defining data governance, organizing complete documentation of rules, SOPs, and SLAs up to business units also measurement and reporting improvement."
Di era sekarang ini, informasi telah menjadi kebutuhan yang sangat penting bagi organisasi. Untuk memperoleh informasi yang bermanfaat, data sebagai sumber informasi harus memiliki kualitas yang baik. Salah satu organisasi yang saat ini bergantung pada kualitas informasi adalah PT. Bank Negara Indonesia, Tbk (BNI). BNI dalam usahanya melakukan transformasi bisnis menjadi bank yang berorientasi pada pelanggan melalui BNI Reformasi, sangat bergantung pada kualitas data nasabah yang baik. Kualitas data yang baik didapatkan dari pengelolaan data yang baik, termasuk diantaranya adalah pengukuran dan peningkatan kualitas data.
Penelitian ini dilakukan untuk mengukur tingkat kematangan dari pengelolaan kualitas data dan memberikan rekomendasi peningkatan kualitas data berdasarkan Data Quality Framework dari David Loshin dan Data Management Body of Knowledge (DMBOK) dari DAMA Institute.
Kerangka kerja yang lengkap dimiliki oleh Data Quality Framework sehingga dapat dihasilkan tingkat kematangan kualitas data yang dimiliki BNI untuk domain harapan, dimensi kualitas data, kebijakan, prosedur, tata kelola, standar, teknologi, dan pengukuran kinerja. Berdasarkan tingkat kematangan dan harapanharapan dari BNI, penulis menentukan kesenjangan yang digunakan untuk meningkatkan kematangan kualitas data di BNI. Berdasarkan best practice dan kerangka kerja yang ada di DMBOK, berhasil didapatkan rekomendasi peningkatan kualitas data, yaitu: perbaikan terhadap data quality requirements, menetapkan dan mengevaluasi data quality service levels, memantau prosedur operasional dan kinerja data quality management, serta melakukan pembersihan dan perbaikan data.
In this era, information has become critical for organization. To gain a maximum benefit from information, data as a source for information must have a good quality. PT. Bank Negara Indonesia (BNI) is one of organization that depends on good information quality. BNI is on their way to transforming from product centric to customer centric, they called this transformation as BNI Reformed. This transformation success is depends on their good customer data quality. Good data quality obtained from well data management, including the measurement and improvement of data quality.
This research was conducted to measure the maturity level of data quality management and provide recommendations on data quality improvement based Data Quality Framework from David Loshin and Data Management Body of Knowledge (DMBOK) of DAMA Institute.
Data Quality Framework has complete framework so that the maturity level of data quality in BNI can be measured for each domain: expectations, the data quality dimensions, policies, procedures, governance, standards, technology, and
performance measurement. Based on the level of maturity and expectations of BNI, the authors determine the gaps that are used to improve data quality maturity in BNI. Based on best practices and frameworks that exist in DMBOK, we can get data quality improvement recommendations, namely: improvements to data quality requirements, define and evaluate the data quality service levels,operational procedures and monitoring the performance of data quality management, as well as cleaning and repair data."