Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 2002
TA3297
UI - Tugas Akhir  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sangat kecil dan mendekati 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in coupled tank systems in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be made using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is very small and close to 0%."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sama dengan 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in the coupled tank system in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be created using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is equal to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ziyad Ain Nur Rafif
"Sistem coupled-tank merupakan konfigurasi yang digunakan pada industri dalam hal pengendalian ketinggian air, biasanya dengan metode pengendalian proportional, integral, derivative (PID). Namun, metode lain seperti reinforcement learning (RL) juga bisa diterapkan. Metode RL dapat dikombinasikan dengan programmable logic controller (PLC) yang sering digunakan dalam proses industri. PLC mengontrol ketinggian air dengan membaca data dari water level transmitter dan mengatur bukaan control valve berdasarkan algoritma RL yang sudah dilatih untuk mencapai kontrol optimal. Algoritma RL yang digunakan adalah twin-delayed deep deterministic (TD3) policy gradient. Performa algoritma ini diukur menggunakan parameter seperti overshoot, rise time, settling time, dan steady-state error, lalu dibandingkan dengan pengendali PID konvensional. Hasil simulasi dan pengujian pada hardware menunjukkan bahwa algoritma RL menghasilkan overshoot sebesar 6.59% dan steady-state error sebesar 3.53%, di mana steady-state error ini terjadi karena sensor yang sensitif sehingga data ketinggian air tidak pernah terekam konstan dan stabil. Sebagai perbandingan, pengendali PID memiliki overshoot sekitar 23.38% dan steady-state error terkecil berkisar pada 7.15%, yang berarti pengendali RL sudah memiliki performa yang lebih baik dibandingkan pengendali PID.

Coupled-tank system is a configuration commonly used in industry, mainly for water level control with proportional, integral, and derivative (PID) control method. But, other methods like reinforcement learning (RL) can be implemented for this control problem. This RL method can be combined with programmable logic controller (PLC) which is often used in industry process. PLC will control water level by reading data from water level transmitter and controlling a control valve opening according to a trained RL algorithm to gain an optimal control. The RL algorithm used is twin-delayed deep deterministic (TD3) policy gradient. The algorithm’s performance will be measured by parameters such as overshoot, rise time, settling time, and steady-state error, and then compared with the conventional PID control method. According to the results from simulation and from the real hardware, the overshoot value that happens is only in the range of 6.59% with the smallest steady-state error value ranged around 3.53%, which happens due to the sensitive sensor so that water level data never recorded at a constant and stable state. For comparison, the PID control has an overshoot around 23.38% and smallest steady-state error around 7.15%, which means that the RL control method has a better performance than the PID control method."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aries Subiantoro
"Makalah ini membahas pemodelan sistem tangki terhubung berbasiskan data masukan-keluaran dengan menggunakan model fuzzy Takagi-Sugeno. Algoritma fuzzy clustering Gustafson-Kessel digunakan untuk mengelompokkan data masukan-keluaran menjadi beberapa cluster berdasarkan kesamaan jarak suatu anggota data masukan-keluaran dari titik tengah suatu cluster.
Cluster-cluster yang terbentuk diproyeksikan orthonormal ke setiap ruang variabel linguistik bagian premis untuk mendapatkan fungsi keanggotaan model fuzzy Takagi-Sugeno. Parameter konsekuen dari model fuzzy Takagi-Sugeno diperoleh dengan mengestimasi data setiap cluster dengan menggunakan metode weighted leastsquares.
Hasil model fuzzy Takagi-Sugeno yang diperoleh divalidasi dengan indikator kinerja variance-accounted-for (VAF) dan root mean square (RMS). Hasil uji simulasi menunjukkan model fuzzy Takagi-Sugeno sanggup meniru karakteristik nonlinier sistem tangki terhubung dengan nilai indikator kinerja model yang baik.

Modeling of Coupled-Tank System Using Fuzzy Takagi-Sugeno Model. This paper describes modeling of coupledtank system based on data measurement using fuzzy Takagi-Sugeno model. The fuzzy clustering method of Gustafson-Kessel algorithm is used to classify input-output data into several clusters based on distance similarity of a member of input-output data from center of cluster.
The formed clusters are projected orthonormally into each linguistic variables of premise part to determine membership function of fuzzy Takagi-Sugeno model. By estimating data in each cluster, the consequent parameters of fuzzy Takagi-Sugeno model are calculated using weighted least-squares method.
The resulted fuzzy Takagi-Sugeno model is validated by using model performance parameters variance-accounted-for (VAF) and root mean square (RMS) as performance indicators. The simulation results show that the fuzzy Takagi-Sugeno model is able to mimic nonlinear characteristic of coupled-tank system with good value of model performance indicators."
Depok: Lembaga Penelitian Universitas Indonesia, 2006
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Nur Fadilah Yuliandini
"Sistem Coupled tank umum digunakan pada bidang industri otomatis, salah satu pengendalian yang umum terjadi pada coupled tank adalah pengendalian ketinggian air. Sistem pengendalian tersebut bertujuan untuk menjaga ketinggian air yang berada pada tangki. Penelitian ini melakukan simulasi pengendalian ketinggian air pada coupled tank dengan menerapkan Reinforcement Learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG). Proses simulasi tersebut dilakukan menggunakan simulink pada MATLAB. Algoritma DDPG melalui serangkaian training sebelum diimplementasikan pada sistem coupled tank. Kemudian pengujian algoritma DDPG dilakukan dengan memvariasikan nilai set point dari ketinggian air dan sistem diberikan gangguan berupa bertambahnya flow in dari control valve lain. Performa dari algorima DDPG dalam sistem pengendalian dilihat dari beberapa parameter seperti overshoot, rise time, settling time, dan steady state error. Hasil yang diperoleh pada penelitian ini bahwa algoritma DDPG memperoleh nilai settling time terbesar sebesar 109 detik, nilai steady state error terbesar sebesar 0.067%. Algoritma DDPG juga mampu mengatasi gangguan dengan waktu terbesar sebesar 97 detik untuk membuat sistem kembali stabil.

The Coupled Tank system is commonly used in the field of industrial automation, and one of the common controls implemented in this system is water level control. The purpose of this study is to simulate water level control in a coupled tank using Reinforcement Learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm. The simulation process is performed using Simulink in MATLAB. The DDPG algorithm undergoes a series of training sessions before being implemented in the coupled tank system. Subsequently, the DDPG algorithm is tested by varying the set point values of the water level and introducing disturbances in the form of increased flow from another control valve. The performance of the DDPG algorithm in the control system is evaluated based on parameters such as overshoot, rise time, settling time, and steady-state error. The results obtained in this study show that the DDPG algorithm achieves a maximum settling time of 109 seconds and a maximum steady-state error of 0.067%. The DDPG algorithm is also capable of overcoming disturbances, with the longest recovery time of 97 seconds to restore system stability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika Sekarsari
"Pada tesis ini dibahas tentang simulasi dan perancangan pengendalian sistem multivariabel Coupled Tank Apparatus dengan menggunakan Neural Network model Direct Invers Control. Model sistem yang bersifat non linier akan dilinierisasi sehingga diperoleh fungsi alih yang mengandung persamaan karakteristik yang menyerupai sistem linier orde dua yang berada dalam keadaan over damped akan selalu stabil. Pengurangan interaksi (kopling) yang terjadi pada sistem multivariabel Coupled Tank Apparatus dilakukan dengan perancangan dekopling yang menggunakan metode Relative Gain Matrik. Perancangan dan simulasi sistem pengendalian Neural Network model Direct Invers Control menggunakan program Matlab Versi 5.3.1. Perbandingan antara analisa tanggapan waktu terhadap sistem kendali yang dirancang dengan sistem kendali Proportional Integral Derivatif serta sistem kendali logika Fuzzy menghasilkan tanggapan respon untuk mencapai keadaan steady state (setting time) pada Neural Network model Direct Invers Control lebih cepat dibandingkan dengan tanggapan waktu yang dihasilkan oleh pengendali konvensional PI, PID, dan Fuzzy.
Dalam hal ini, data parameter sistem untuk simulasi diperoleh dari hasil penelitian dan percobaan di Laboratorium Fakultas Teknik Universitas Indonesia.

In this thesis, a study on simulation and design of a multivariabel Control of Coupled Tank Apparatus Systems is presented. A Neural Network Controller based on a Direct Invers Control is applied. The linierized model of the Coupled Tank Apparatus Systems appears to be a stable second order transfer function with an over damped characteristic. A Decoupling Compensator is designed using Relative Gain Matrix Method of Bristol. The Simulation and control is implemented using Matlab 5.3.1 on apersonal computer. For comparison a PID controller and a Fuzzy Logic Controller are also implemented. It is found that NN Direct Invers Control shows a better performance than the other control method in terms of speed response.
All data for experiment and equipment used are done in the Control Laboratory, Dept of Electrical Engineering, Faculty of Technology University of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T8480
UI - Tesis Membership  Universitas Indonesia Library
cover
Rayhan Ghifari Andika
"Pengendalian proses di industri desalinasi sangat penting untuk mengoptimalkan operasi dan mengurangi biaya produksi. Pengendali proporsional, integral, dan derivatif (PID) umum digunakan, namun tidak selalu efektif untuk sistem coupled-tank yang kompleks dan nonlinier. Penelitian ini mengeksplorasi penggunaan algoritma reinforcement learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG) untuk mengendalikan ketinggian air pada sistem coupled-tank. Tujuan penelitian ini adalah merancang sistem pengendalian ketinggian air menggunakan RL berbasis programmable logic controller (PLC) untuk mencapai kinerja optimal. Sistem diuji pada model coupled-tank dengan dua tangki terhubung vertikal, di mana aliran air diatur untuk menjaga ketinggian air dalam rentang yang diinginkan. Hasil menunjukkan bahwa pengendalian menggunakan RL berhasil dengan tingkat error steady-state (SSE) antara 4,63% hingga 9,6%. Kinerja RL lebih baik dibandingkan PID, dengan rise time dan settling time yang lebih singkat. Penelitian ini menyimpulkan bahwa RL adalah alternatif yang lebih adaptif untuk pengendalian level cairan di industri dibandingkan dengan metode konvensional.

Process control in the desalination industry is crucial for optimizing operations and reducing production costs. Proportional, integral, and derivative (PID) controllers are commonly used but are not always effective for complex and nonlinear coupled-tank systems. This study explores the use of reinforcement learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm to control the water level in a coupled-tank system. The objective of this research is to design a water level control system using RL based on a programmable logic controller (PLC) to achieve optimal performance. The system was tested on a coupled-tank model with two vertically connected tanks, where the water flow is regulated to maintain the water level within the desired range. Results show that control using RL achieved a steady-state error (SSE) between 4.63% and 9.6%. RL performance was superior to PID, with faster rise and settling times. This study concludes that RL is a more adaptive alternative for liquid level control in industrial settings compared to conventional methods."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Risaldi Faizzudin R.
"Machine Learning (ML) telah menjadi salah satu teknologi yang sangat populer. Hal ini memungkinkan ML untuk diaplikasikan dalam sistem industri otomasi, seperti pengendalian ketinggian air pada coupled tank. Penelitian ini bertujuan untuk mengevaluasi kinerja metode reinforcement learning, khususnya proximal policy optimization (PPO), dalam mengendalikan ketinggian air pada sistem coupled tank, serta membandingkannya dengan metode pengendalian konvensional, yaitu proporsional derivative integral (PID) controller. Pemilihan PPO didasari oleh kemampuannya dalam menyelesaikan permasalahan kontinu dengan komputasi yang sederhana. Penelitian dilakukan dengan membuat sistem pengendalian ketinggian air pada coupled tank menggunakan perangkat-perangkat seperti control valve, programmable logic controller (PLC), DAQ card, dan water level transmitter. Perangkat-perangkat tersebut dihubungkan dengan MATLAB/Simulink menggunakan OPC server melalui PLC sebagai interface. Hasil penelitian menunjukkan bahwa respon pengendalian menggunakan metode PPO memiliki overshoot sebesar 49.26%, rise time sebesar 104 detik, settling time sebesar 306 detik, dan steady state error sebesar 5.4%. Sementara itu, metode PID memiliki nilai overshoot yang lebih rendah (38.52%), tetapi nilai rise time, settling time, dan steady state error yang lebih tinggi (masing-masing sebesar 118 detik, 502.4 detik, dan 24.62%). Dengan demikian, performa PPO secara relatif lebih baik daripada PID dalam mengendalikan ketinggian air pada coupled tank.

Machine Learning (ML) has become one of the most popular technologies. It enables ML to be applied in automation industry systems, such as controlling water levels in coupled tanks. This study aims to evaluate the performance of reinforcement learning methods, specifically proximal policy optimization (PPO), in controlling water levels in coupled tank systems, and compare it with conventional control methods, namely proportional derivative integral (PID) controller. The selection of PPO is based on its ability to solve continuous problems with simple computations. The research was conducted by creating a water level control system in coupled tanks using devices such as control valves, programmable logic controllers (PLC), DAQ card, and water level transmitters. These devices were connected to MATLAB/Simulink using an OPC server through PLC as an interface. The research results show that the control response using the PPO method has an overshoot of 49.26%, a rise time of 104 seconds, a settling time of 306 seconds, and a steady state error of 5.4%. Meanwhile, the PID method has a lower overshoot value (38.52%), but higher rise time, settling time, and steady state error values (118 seconds, 502.4 seconds, and 24.62%, respectively). Thus, the performance of PPO is relatively better than PID in controlling water levels in coupled tanks.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library