Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Michelle Agustaranny Sekar Arum
"Sebagian besar perkebunan karet di Sumatera Selatan mengalami penurunan produksi karena dampak penyakit gugur daun. Penyakit ini sebagian besar disebabkan oleh persebaran jamur Oidium sp., Colletotrichum sp., dan Pestalotiopsis sp. Oleh karena itu, pembangunan model berbasis indeks vegetasi NDRE, GNDVI, VARI, dan ARVI, yang bertujuan untuk mendeteksi persebaran penyakit ini dianggap penting. Penelitian dilakukan di Perkebunan Pusat Penelitian Karet Sembawa dengan memanfaatkan data UAV multispektral yang telah diproses menggunakan OBIA, serta survei lapangan. Dari 623 sampel data, 70% digunakan untuk pelatihan model, sementara 30% sampel digunakan untuk pengujian model. Pengolahan data dilakukan menggunakan Google Earth Engine dan visualisasi dilakukan dengan ArcGIS Pro. Hasil penelitian menunjukkan bahwa keseluruhan model memiliki tingkat akurasi pelatihan secara keseluruhan di atas 0,7, dengan model GNDVI + NDRE + VARI menonjol dengan tingkat akurasi pelatihan yang paling baik. Namun, model tersebut menunjukkan kinerja yang buruk dalam pengujian dengan nilai akurasi validasi yang rendah, hal ini menunjukkan bahwa model belum dapat memprediksi penyakit tanaman karet dengan baik. Selain itu, dari hasil analisis kondisi fisik ditemukan bahwa kondisi suhu dan curah hujan di perkebunan karet Sembawa berada pada nilai optimal yang mendukung pertumbuhan dan penyebaran ketiga jenis jamur penyebab penyakit tersebut.

South Sumatra plays a crucial role as Indonesia's main rubber exporter, making it a flagship commodity. However, most rubber plantations in South Sumatra face declining production due to leaf fall disease, primarily caused by the fungi Oidium sp., Colletotrichum sp., and Pestalotiopsis sp. Therefore, developing a vegetation index-based model using NDRE, GNDVI, VARI, and ARVI to detect the spread of this disease is considered essential. The study was conducted at the Sembawa Rubber Research Center Plantation, utilizing multispectral UAV data processed with OBIA and field surveys. Of the 623 data samples, 70% were used for model training, while 30% were used for model testing. Data processing was performed using Google Earth Engine, and visualization was done with ArcGIS Pro. Results showed that all models had overall training accuracy above 0.7, with the GNDVI + NDRE + VARI model standing out with the best training accuracy. However, this model performed poorly in testing, with low validation accuracy, indicating its inability to predict new data. Additionally, physical condition analysis revealed that the temperature and rainfall conditions in the Sembawa rubber plantation were optimal, supporting the growth and spread of the three disease-causing fungi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library