Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21 dokumen yang sesuai dengan query
cover
Thony Antonius
"Kerasnya persaingan usaha dan suasana kompetisi pada industri perbankan yang semakin ketat menjadikan perusahaan berusaha sekeras mungkin untuk mencegah berpindahnya pelanggan mereka ke perusahaan pesaing. Salah satu cara untuk bisa mencegah berpindahnya pelanggan ke perusahaan pesaing adalah dengan melakukan prediksi dan deteksi dini pelanggan-pelanggan mana saja yang berpotensi meninggalkan perusahaan dan beralih ke perusahaan pesaing yaitu dengan melakukan churn prediction.
Churn prediction sudah diimplementasikan secara luas di industri telekomunikasi sebagai bagian dari churn management. Salah satu teknik yang digunakan untuk melakukan churn prediction adalah data mining. Tesis ini mencoba menggali pola-pola churn dari salah satu institusi perbankan nasional, dengan harapan bisa menemukan sebuah model churn bagi intitusi perbankan tersebut.
Hasil analisa yang dilakukan melahirkan pengetahuan mengenai kondisi seperti apa yang mengakibatkan seorang nasabah akan menutup rekening mereka. Penggalian informasi juga berhasil menemukan beberapa pola yang seperti apa yang bisa dijadikan pertanda seorang nasabah akan menutup rekening mereka. Keterbatasan jumlah variabel dari dataset yang digunakan menghasilkan model data mining menjadi sangat sederhana, sehingga diperlukan adanya tambahan variabel lain untuk menghasilkan model yang lebih kuat.

The harshness of the competition for efforts and the atmosphere of the competition in the increasingly tight banking industry made the company try as hard as possible to prevent their customer's moving to the competitor's company.
Churn prediction is One of the methods that could prevent the customer's moving to the competitor's company by carrying out the prediction and the early detection of any customer who had the potential to leave the compani and to change to the competitor's company.Churn prediction already implemented widely in the telecommunications industry as a part of churn management. One of the techniques that was used to do churn prediction was the data mining. This thesis tried to dig up patterns churn from one of the national banking institutions, in the hope of could find a model churn for this banking institution.
Results of the analysis that was carried out produced knowledge concerning the condition like what resulted in a customer closing their account. The excavation of information also succeeded in finding several patterns that like what could be made the sign of a customer will close their account. The limitations of the number of variables from the set data that was used produced the data model mining became very simple, so as to be needed by the existence of the addition of the other variable to produce the stronger model.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Etano Garda Ariyan
"Selama beberapa tahun terakhir, margin laba operasi dari operator jasa layanan telekomunikasi di Indonesia semakin berkurang. Situasi ini dominan dipicu oleh perang harga agresif yang dilakukan oleh semua operator untuk mendapatkan pelanggan baru. Oleh karena itu, suatu customer churn prediction modelling diperlukan untuk memetakan pelanggan dengan lebih baik agar strategi program retensi pelanggan dapat dieksekusi seefisien mungkin tanpa mengorbankan efektivitasnya. Penelitian ini bertujuan untuk memperoleh bukti empiris dan membangun customer churn prediction modelling dari berbagai faktor independen yang secara langsung maupun tidak langsung mempengaruhi pengambilan keputusan pelanggan untuk churn atau bertahan di sebuah operator jasa layanan telekomunikasi tertentu. Data penelitian yang digunakan fokus untuk memanfaatkan data sekunder dari penggunaan, perilaku, dan data demografis pelanggan dari sebuah operator jasa layanan telekomunikasi. Sampel diuji menggunakan analisis regresi logistik untuk melatih dan menghasilkan customer churn prediction modelling akhir yang relevan dengan karakteristik pelanggan telekomunikasi saat ini.

For several years, the operating profit margin of telecommunication operator in Indonesia have been diminished. The situation is mainly triggered by aggressive price war deployed by all operators to acquire new customers. Hence, the customer churn prediction modelling is needed to map customer better and make the retention program strategy as efficient as possible yet without comprimising its effectiveness. This research aims to obtain empirical evidence and build customer churn prediction modelling from various independent factors that possibly affect the decision making of customer to churn or retain at certain telecommunication provider in Indonesia. The research data are mainly focus in utilizing secondary data of real customer's usage, behaviour, and demographic data from a telecommunication company. The samples were tested using logistic regression analysis to train and produce final churn prediction model which relevant to current customer's characteristic at telecommunication industry."
Depok: Fakultas Eknonomi dan Bisnis Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Febtriany
"Saat ini kompetisi di industri telekomunikasi semakin ketat. Perusahaan telekomunikasi yang dapat tetap menghasilkan banyak keuntungan yaitu perusahaan yang mampu menarik dan mempertahankan pelanggan di pasar yang sangat kompetitif dan semakin jenuh. Hal ini menyebabkan perubahan strategi banyak perusahaan telekomunikasi dari strategi 'growth '(ekspansi) menjadi 'value added services'. Oleh karena itu, program mempertahankan pelanggan ('customer retention') saat ini menjadi bagian penting dari strategi perusahaan telekomunikasi. Program tersebut diharapkan dapat menekan 'churn' 'rate 'atau tingkat perpindahan pelanggan ke layanan/produk yang disediakan oleh perusahaan kompetitor.
Program mempertahankan pelanggan ('customer retention') tersebut tentunya juga diimplementasikan oleh PT Telekomunikasi Indonesia, Tbk (Telkom) sebagai perusahaan telekomunikasi terbesar di Indonesia. Program tersebut diterapkan pada berbagai produk Telkom, salah satunya Indihome yang merupakan 'home services' berbasis 'subscriber' berupa layanan internet, telepon, dan TV interaktif. Melalui kajian ini, penulis akan menganalisa penyebab 'churn' pelanggan potensial produk Indihome tersebut, sehingga Telkom dapat meminimalisir angka 'churn' dengan melakukan program 'customer retention' melalui 'caring' yang tepat.
Mengingat ukuran 'database' pelanggan Indihome yang sangat besar, penulis akan menganalisis data pelanggan tersebut menggunakan metoda 'Big Data Analytics'. 'Big Data' merupakan salah satu metode pengelolaan data yang sangat besar dengan pemetaan dan 'processing' data. Melalui berbagai bentuk 'output', implementasi 'big data' pada perusahaan akan memberikan 'value' yang lebih baik dalam pengambilan keputusan berbasis data.

Nowadays, telecommunication industry is very competitive. Telecommunication companies that can make a lot of profit is the one who can attract and retain customers in this highly competitive and increasingly saturated market. This causes change of the strategy of telecommunication companies from growth strategy toward value added services. Therefore, customer retention program is becoming very important in telecommunication companies strategy. This program hopefully can reduce churn rate or loss of potential customers due to the shift of customers to other similar products.
Customer retention program also implemented by PT Telekomunikasi Indonesia, Tbk (Telkom) as the leading telecommunication company in Indonesia. Customer retention program implemented for many Telkom products, including Indihome, a home services based on subscriber which provide internet, phone, and interactive TV. Through this study, the authors will analyze the cause of churn potential customers Indihome product, so that Telkom can minimize the churn number by doing customer retention program through the efficient caring.
Given by huge customer database the author will analyze using Big Data analytics method. Big Data is one method in data management that contain huge data, by mapping and data processing. Through various forms of output, big data implementation on the organization will provide better value in data-based decision making.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Endang Fiansyah
"Perusahaan IAPS telah meluncurkan berbagai aplikasi, salah satunya ialah aplikasi Indosat Imkas dan Pede (Ponsel Duit) (berikutnya disebut aplikasi). Permasalahannya ialah masih terdapat sembilan belas persen pengguna valid yang tidak bertransaksi tiap bulan di aplikasi untuk mencapai target yaitu dua puluh persen pengguna valid bertransaksi tiap bulan di aplikasi. Dapat terjadi perubahan strategi bisnis apabila gagal mencapai target dan mengalami kerugian secara finansial. Peneliti menemukan satu masalah yang berdampak paling signifikan yaitu pemberian informasi dan promosi yang tidak berjalan efektif. Diperlukan teknik data mining dan klasifikasi churn yang menggunakan pemelajaran mesin untuk memprediksi pengguna yang tepat untuk pemberian informasi dan promosi. Pertanyaan penelitian ini adalah apa model pemelajaran mesin terbaik dalam melakukan prediksi pengguna yang churn dan loyal. Selain itu, apa faktor-faktor yang mempengaruhi keputusan pelanggan untuk churn dan loyal. Penelitian ini menghasilkan model yang dikembangkan menggunakan mesin pemelajaran dengan pengawasan menggunakan classifier Random Forest merupakan model pemelajaran mesin dengan performa terbaik untuk melakukan klasifikasi dan prediksi pengguna yang churn dan loyal. Selain itu, data ulasan pelanggan Google playstore yang di klasifikasikan kedalam push-pull classification dapat meningkatkan performa classifier. Beberapa fitur yang memengaruhi keputusan churn pelanggan yaitu “debetKreditRatio”, “push_service”. Kedua fitur itu berkaitan erat dengan tingkat layanan di aplikasi, semakin tinggi tingkat layanan yang diterima pengguna maka peluang akan churn rendah. Organisasi hendaknya membuat strategi untuk meningkatkan nilai “debetKreditRatio” dan “push service”. Selanjutnya organisasi dapat mengembangkan strategi retensi untuk pemberian informasi dan promosi yang berbeda untuk pelanggan yang akan churn dan loyal.

The IAPS company has has launched various applications, including the Indosat Imkas and Pede (Ponsel Duit) applications (from now on referred to as applications). The problem is that there is still nineteen percent of valid users who do not transact every month on the application to achieve the target, which is twenty percent of valid users who transact every month on the application. There can be a change in business strategy if it fails to achieve the target and suffers a financial loss. The researcher found one problem that had the most significant impact, namely promotions that did not work effectively. Data mining and churn classification techniques are required that use machines learning to predict the right users for targeted promotions or other strategies. The research question is what is the best machine learning model in predicting churn and loyal users. In addition, another research question is what are the factors that influence the customer's decision to churn and be loyal. This study resulted in a model developed using a supervised learning machine using the Random Forest classifier, which is the best-performing machine learning model for classifying and predicting churn and loyal users. In addition, customer reviews from Google play store data classified into a push-pull classification can also improve the classifier's performance. Several features affect customer churn decisions, namely "debetKreditRatio," "push_service." Both features are closely related to the level of service in the application. The higher the level of service the user receives, the lower the chance of churn. Organizations should develop strategies to increase the value of the "debit credit ratio" and "push service." Furthermore, the organization can develop different promotional approaches for customers who will churn and be loyal."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Endang Fiansyah
"Perusahaan IAPS telah meluncurkan berbagai aplikasi, salah satunya ialah aplikasi Indosat Imkas dan Pede (Ponsel Duit) (berikutnya disebut aplikasi). Permasalahannya ialah masih terdapat sembilan belas persen pengguna valid yang tidak bertransaksi tiap bulan di aplikasi untuk mencapai target yaitu dua puluh persen pengguna valid bertransaksi tiap bulan di aplikasi. Dapat terjadi perubahan strategi bisnis apabila gagal mencapai target dan mengalami kerugian secara finansial. Peneliti menemukan satu masalah yang berdampak paling signifikan yaitu pemberian informasi dan promosi yang tidak berjalan efektif. Diperlukan teknik data mining dan klasifikasi churn yang menggunakan pemelajaran mesin untuk memprediksi pengguna yang tepat untuk pemberian informasi dan promosi. Pertanyaan penelitian ini adalah apa model pemelajaran mesin terbaik dalam melakukan prediksi pengguna yang churn dan loyal. Selain itu, apa faktor-faktor yang mempengaruhi keputusan pelanggan untuk churn dan loyal. Penelitian ini menghasilkan model yang dikembangkan menggunakan mesin pemelajaran dengan pengawasan menggunakan classifier Random Forest merupakan model pemelajaran mesin dengan performa terbaik untuk melakukan klasifikasi dan prediksi pengguna yang churn dan loyal. Selain itu, data ulasan pelanggan Google playstore yang di klasifikasikan kedalam push-pull classification dapat meningkatkan performa classifier. Beberapa fitur yang memengaruhi keputusan churn pelanggan yaitu “debetKreditRatio”, “push_service”. Kedua fitur itu berkaitan erat dengan tingkat layanan di aplikasi, semakin tinggi tingkat layanan yang diterima pengguna maka peluang akan churn rendah. Organisasi hendaknya membuat strategi untuk meningkatkan nilai “debetKreditRatio” dan “push service”. Selanjutnya organisasi dapat mengembangkan strategi retensi untuk pemberian informasi dan promosi yang berbeda untuk pelanggan yang akan churn dan loyal.

The IAPS company has has launched various applications, including the Indosat Imkas and Pede (Ponsel Duit) applications (from now on referred to as applications). The problem is that there is still nineteen percent of valid users who do not transact every month on the application to achieve the target, which is twenty percent of valid users who transact every month on the application. There can be a change in business strategy if it fails to achieve the target and suffers a financial loss. The researcher found one problem that had the most significant impact, namely promotions that did not work effectively. Data mining and churn classification techniques are required that use machines learning to predict the right users for targeted promotions or other strategies. The research question is what is the best machine learning model in predicting churn and loyal users. In addition, another research question is what are the factors that influence the customer's decision to churn and be loyal. This study resulted in a model developed using a supervised learning machine using the Random Forest classifier, which is the best-performing machine learning model for classifying and predicting churn and loyal users. In addition, customer reviews from Google play store data classified into a push-pull classification can also improve the classifier's performance. Several features affect customer churn decisions, namely "debetKreditRatio," "push_service." Both features are closely related to the level of service in the application. The higher the level of service the user receives, the lower the chance of churn. Organizations should develop strategies to increase the value of the "debit credit ratio" and "push service." Furthermore, the organization can develop different promotional approaches for customers who will churn and be loyal."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
"Classification is an important topic in data mining research . A classification problem on the discovery of classification reles that correctly classify an unkown member of a class...."
Artikel Jurnal  Universitas Indonesia Library
cover
Ketut Gde Manik Karvana
"Banyak perusahaan yang telah menyadari bahwa mereka harus berusaha keras tidak hanya mendapatkan pelanggan baru, namun juga untuk mempertahankan pelanggan lama. Memprediksi nasabah yang akan pergi mulai dilakukan oleh perusahaan. Prediksi nasabah churn adalah kegiatan yang dilakukan untuk memprediksi nasabah tersebut akan meninggalkan perusahaan atau tidak.
Banyak cara yang dapat dilakukan untuk memprediksi nasabah churn. Salah satu cara memprediksi nasabah churn ini adalah dengan menggunakan teknik klasifikasi dari data mining yang menghasilkan sebuah model machine learning. Dengan mempelajari data nasabah seperti data demografi, data transaksi dan data kepemilikan produk maka, perusahaan akan bisa memprediksi nasabah yang akan churn, sehingga perusahaan dapat melakukan tindakan pencegahan agar nasabah tersebut tidak berhenti untuk menggunakan jasa dari perusahaan.
Penelitian ini membandingkan beberapa metode dari teknik klasifikasi data mining dan pengukuran dari sampel datanya. Dari penelitian ini didapat bahwa metode Support Vector Machine (SVM) dengan perbandingan sampling kelas data 50:50 merupakan metode terbaik untuk memprediksi nasabah churn di Bank XYZ. Hasil dari pemodelan ini bisa digunakan untuk mendapatkan informasi nasabah yang akan pergi meninggalkan perusahaan sehingga perusahaan dapat mengambil tindakan sebelum nasabah tersebut pergi.

Many companies have realized they must strive not only to get new customers but also to retain old customers. The company began to predict customers who would no longer use company services. Churn customer prediction is an activity carried out to predict whether the customer will leave the company or not.
There are many ways that can be done to predict churn customers, usually to predicting this customer churn by using a classification technique from data mining that produces a machine learning model. Studying customer historical data such as demographic data, transaction data and product ownership data, will be able to predict customers who will churn and can take preventive measures so these customers do not stop using services from the company.
This study compares several methods of data mining classification techniques and measurements from data samples. From this study it was found that the method of Support Vector Machine (SVM) with a comparison of 50:50 data class sampling is the best method for predicting churn customers at Bank XYZ. The results of this modeling can be used to obtain information on customers who will stop using  company services so the company can take action before the customer leaves.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dimitri Putra Laksyandi
"Penelitian ini bertujuan merancang sistem prediksi churn pelanggan yang memanfaatkan proses data mining. Sistem yang dihasilkan , memprediksi churn pelanggan dan menampilkan hasil prediksi dalam format laporan tertentu yang diperlukan. Identifikasi variabel-variabel prediksi churn dilakukan berdasarkan wawancara dan penelitian terdahulu yang antara lain mencakup informasi mengenai riwayat pelanggan, tagihan, dan data panggilan rinci, Teknik data mining yang dipilih adalah teknik klasifikasi dengan algoritma artificial neural networks. Artificial neural networks menghasilkan model yang merepresentasikan pola perilaku pelanggan yang churn dan tidak churn. Penelitian yang dilakukan menggunakan data pelanggan Flexi Classy daerah Jakarta menghasilkan tingkat akurasi model prediksi dengan error 6,88% untuk dataset validasi.

The purpose of this research is to design a churn prediction model which based on data mining. The result of this research is a model that can predict whether customer is a churner or not and then show us the output of prediction in a certain report. Variables were determined by a discussion with an expert or taken from previous similar research. The variables were taken from customer profile database, billing record database, and call detail record database. Data mining technique that used in this research is artificial neural networks. Artificial neural networks create a model that can show the behaviour of churners and non churners. The research, which use customer data of Flexi Classy who live around Jakarta, created a churn prediction model which have 6,88% error rate (test dataset)."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52360
UI - Skripsi Open  Universitas Indonesia Library
cover
Fitri Pradina Putri
"ABSTRAK
Pasar layanan seluler di Indonesia saat ini telah memasuki masa jenuh. Maka, fokus perusahaan penyedia layanan seluler berubah dari memperoleh pelanggan baru menjadi mempertahankan pelanggannya terutama yang pra bayar agar tidak berpindah ke perusahaan pesaing. Penelitian ini bertujuan membuat model klasifikasi dan mengetahui karakteristik pelanggan pra bayar yang berpotensi untuk berhenti berlangganan. Dengan penggunaan algoritma CART untuk mengklasifikasi 7302 data pelanggan pra bayar suatu perusahaan penyedia layanan seluler, didapatkan akurasi model sebesar 90.5%. Hasil menunjukkan bahwa model layak untuk diterapkan dan karakteristik pelanggan dapat diketahui dari empat variabel yaitu lama di perusahaan, segmen, perubahan biaya SMS, dan perubahan biaya panggilan

ABSTRACT
The cellular market is becoming saturated in Indonesia. Thus, provider companies’ focus is shifted from acquiring new subscribers to retaining their subscribers, especially prepaid, so that they will not move to the company’s competitor. The purpose of this study is to make a classification model and know the characteristics of prepaid subscribers who have the potential to churn. Using CART algorithm for classifying 7302 data of prepaid subscribers in a provider company, the model has an accuracy of 90.5%. Result shows that the model is feasible to be applied and the characteristics of the subscribers can be known from four variables: length of stay, segment, change of SMS fees, and change of calling fees"
2015
S59302
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aswin Marfan Pratama
"Studi tentang pengelolaan customer retention bersumber dari kebutuhan perusahaan untuk mempertahankan customer agar tetap loyal menggunakan produk ataupun layanan yang ditawarkan. Hingga saat ini customer retention menjadi salah satu perhatian utama dalam dunia bisnis karena menurunnya tingkat customer retention berdampak pada berkurangnya revenue. Big data mulai banyak dimanfaatkan sebagai sumber data untuk memahami suatu kondisi ataupun untuk memprediksi suatu behavior yang akan terjadi melalui berbagai pemodelan analisis data. Peristiwa berhentinya customer dari menggunakan produk ataupun layanan disebut customer churn.
Penelitian ini menyajikan dua model untuk membantu suatu perusahaan jasa penyedia layanan online berbasis internet untuk menganalisis dan memprediksi future behavior berupa customer churn dan memahami kondisi yang menyebabkannya. Model prediksi customer churn yang dikembangkan menggunakan konsep logistic regression dan random forest.
Hasil dari penelitian ini menunjukkan bahwa model yang dikembangkan bisa mengidentifikasi customer suatu perusahaan penyedia layanan online QWE.Inc yang berpotensi akan meninggalkan layanan. Selain itu penelitian ini juga menganalisis faktor-faktor yang memiliki pengaruh signifikan terhadap kondisi tersebut dan memberikan saran pengelolaan customer retention dengan program customer relationship management.

The study of customer retention management is influenced by the need of the companies to keep their customers stay loyal to use their products or services. Customer retention is one of the main concerns in the business world until today, since the declining level of customer retention will result in the reduced revenue. Big data begin to be widely used as source of data to learn about condition or to predict behavior that may occur through various data analysis modeling. The event of the customer stop from using the product or service is called customer churn.
This study presents two models to help QWE Inc. an internet based online service provider company, to analyze and predict future behavior which is customer churn and understand the causes. Customer churn prediction models in this study have been developed using logistic regression and random forest concepts.
The results of this study indicate that the developed model can identify the customer of QWE.Inc that will potentially leave the service. In addition, this study also analyzed the factors that have a significant influence on these conditions and provide advice on customer retention management with customer relationship management programs.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3   >>