Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Riskyana Dewi Intan Puspitasari
"Perekaman gambaran Denyut Jantung Janin (DJJ) dan kontraksi uterus ibu merupakan salah satu pemeriksaan yang dilakukan untuk pemantauan kesehatan ibu dan janin. Pemantauan gambaran DJJ dan kontraksi uterus biasanya didukung dengan alat elektronik yang disebut Kardiotokografi (KTG). Tujuan dari pemantauan menggunakan KTG, terutama bagi kesehatan janin, adalah untuk mencegah terjadinya mobiditas dan mortalitas pada janin yang memiliki resiko mengalami hipoksia. Dalam penggunaannya, pergerakan ibu atau janin serta pergeseran sensor pada saat pengambilan data menyebabkan sinyal KTG bersifat non-stasioner dan memuat noise. Noise dan bentuk non-stasioner yang muncul menurunkan kualitas perekaman sinyal KTG sehingga dapat menimbulkan kesalahan interpretasi oleh dokter atau bidan. Deteksi otomatis dapat ditambahkan pada sistem KTG untuk memudahkan obgin dan bidan dalam melakukan interpretasi serta membantu mengurangi resiko kesalahan interpretasi gambaran DJJ. Penelitian ini bertujuan untuk menyelesaikan masalah deteksi otomatis terjadinya hipoksia pada janin mengunakan sinyal DJJ pada data KTG yang robust terhadap noise. Pada penelitian ini digunakan pendekatan metode Higher Order Spectral (HOS) Bispektrum. Hasil evaluasi menunjukkan dari penelitian ini diperoleh hasil akurasi, sensitivitas, spesifisitas, f1-score, dan AUC sebesar 60.02%, 60.91%, 57.75 %, 60.02 %, dan 60.23 %.

Recording signal of Fetal Heart Rate (FHR) and maternal uterine contractions is one of the examinations conducted for monitoring maternal and fetal health. The monitoring of FHR and uterine contractions signal is usually supported by an electronic device called Cardiotocography (CTG). The purpose of monitoring using CTG is to prevent morbidity and mortality in the fetuses who are at risk of developing hypoxia. In the mechanism of the occurence of FHR, changes that occur at FHR are also effected by uterine contractions. In its use, the movement of the mother of fetus, and shifts of the sensor during data collection cause CTG signal to be non-stationary and noisy. Noise and non-stationary shape that appear in signal reduce the quality of CTG signal so that it can cause misinterpretastion by doctor and midwives. Automatic detection can be added to the CTG system to make easier for midwives to interpret and help reduce the risk of misinterpretation of FHR and uterine contractions signal. This study aims to solve the problem of automatic detection of hypoxia in the fetus using FHR and uterine contraction signal from CTG data. Besides, a detection process that is robust to noise is also carried out. Bispektrum cross-correlation wavelet approach was used in this study. Evaluation results show that the method proposed in this study obtained accuracy, sensitivity, specificity, f1-score, and AUC 60.02%, 60.91%, 57.75 %, 60.02 %, dan 60.23 %."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Benyamin Kusumoputro
"Makalah ini membantu tentang pengembangan sistem identifikasi pembicara menggunakan analisis spektra orde tinggi dan jaringan neural sebagai pengklasifikasi pola. Analisa spektra orde tinggi ini perlu dipergunakan untuk mengetahui performasinya dalam mengidentifikasi pembicara berdasarkan suara yang terpendam dalam Gaussian noise. Berkaitan dengan proses pengolahan data hasil analisis spektra orde tinggi memerlukan biaya komputasi yang sangat tinggi, maka kompresi data kemudian dilakukan tanpa mengurangi kandungan informasi yan ada di dalamnya. Kompresi data ini dilaksanakan menggunakan jaringan neural hibrida antara SOM dan LVQ, dengan membangkitkan sejumlah vektor pewakil yang dianggap dapat mewakili seluruh vektor pewakil yang dianggap dapat mewakili seluruh vektor data hasil analisa spektra orde tinggi tersebut. Sebagai salah satu faktor dalam memperbandingkan kinerja analisa spektra orde tinggi ini, maka jumlah vektor pewakil dibatasi bergerak antara 25 hingga 343 buah. Jaringan neural probabillistik yang dipergunakan sebagai pengklasifikasi pola, menunjukkan kinerja yang sangat baik untuk dapat menentukan apakah seorang pembicara dapat teridentifikasi dengan benar. Hasil eksperimen menunjukkan bahwa sistem dapat menentukan dengan tingkat ketelitian 100% pada suara dengan tingkat noise 20 dB dan menurun menjadi 97% untuk SNR dB dan 89% untuk SNR 0 dB."
2003
JIKT-3-2-Okt2003-111
Artikel Jurnal  Universitas Indonesia Library
cover
Agus Buono
"Suara merupakan suatu besaran yang memenuhi syarat sebagai ciri biometrik yang efektif dan efisien. Namun demikian, suara adalah fenomena yang merupakan perpaduan multidimensi serta dipengaruhi berbagai aspek, seperti karakteristik pembicara (dimensi titik artikularis, emosi, kesehatan, umur, jenis kelamin, dialek), bahasa, dan lingkungan (background dan media transmisi), sehingga sistem yang telah dikembangkan hingga sekarang belum bisa bekerja dengan baik pada situasi real. Hal inilah yang melatarbelakangi penelitian ini dilakukan.
Pada penelitian ini dilakukan kajian terhadap teknik higher order statistics (HOS) dan model Mel-Frequency Cepstrum Coefficients (MFCC) sebagai ekstraksi ciri yang diintegrasikan dengan Hidden Markov Model (HMM) sebagai pengenal pola untuk menghasilkan sistem identifikasi pembicara yang lebih robust terhadap noise, khususnya Gaussian Noise. Penelitian yang dilakukan lebih difokuskan pada bagian ekstraksi Ciri dari sistem identifikasi pembicara. Sementara ini, bagian pengenal pola menggunakan teknik yang telah banyak dikaji pada berbagai riset pemrosesan suara dan memberikan hasil yang baik, yaitu HMM. Strategi yang dilakukan adalah melalui pendekatan empiris untuk menunjukkan kegagalan teknik ekstraksi ciri konvensional, yaitu ID-MFCC yang berbasis power spektrum, pada lingkungan ber-noise, dilanjutkan dengan mengkaji permsalahannya, dan diusulkan teknik ekstraksi berbasis HOS untuk mengatasi pemasalahan tersebut. Berikutnya adalah melakukan serangkaian percobaan untuk menunjukkan efektifitas teknik yang diusulkan, studi komparasi dan mengajukan suatu usulan rancangan sistem.
Berdasar bukti empiris, terlihat bahwa permasalahan 1D-MFCC adalah pada inputnya, yaitu power spektrum yang bersifat tidak stabil terhadap noise. Pada penelitian ini diusulkan untuk mengganti power spektrum dengan bispektrum yang secara teori lebih robust terhadap noise. Teknik yang diusulkan adalah suatu metodologi untuk mengekstrak nilai bispektrum sinyal suara dengan MFCC dan diintegrasikan dengan HMM untuk membentuk sistem identitikasi pembicara. Oleh karena itu, pada penelitian ini dilakukan perluasan teknik ID-MFCC menjadi 2D-MFCC. Untuk meningkatkan efektifitas sistem, diusulkan teknik kuantisasi sebagai cara merepresentasikan nilai bispektrum sehingga distribusi spasialnya terakomodasi, dan dilanjutkan dengan transformasi wrapping dan kosinus seperti pada MFCC.
Hasil percobaan menunjukkan bahwa teknik konvensional yang berbasis pada power spektrum dapat menangkap ciri suara tanpa penambahan noise dengan baik dan jika dipadukan dengan Mel-Frequency Cepstrum Coefficients (MFCC) sebagai ekstraksi ciri dan HMM sebagai pengenal pola, maka akan menghasilkan sistem dengan akurasi di atas 98.8%. Namun demikian, dengan penambahan noise 20 dB, nilai power spektnlm mengalami perubahan secara nyata, sehingga akurasi sistem jatuh hingga level di bawah 50%. Teknik penghapusan noise secara adoptive mampu meningkatkan akurasi menjadi 77.7%, namun dengan noise yang lebih besar, teknik ini gagal bekeqia dengan baik.
Sistem yang dikembangkan dengan menggunakan bispektrum sebagai penentu ciri dipadukan dengan MFCC yang diperluas ke dua dimensi berhasil memberikan akurasi 99.9% untuk sinyal suara asli. Namun untuk sinyal dengan noise 20 dB, akurasi sistem menjadi sekitar 70%. Optimasi pada bentuk Elter pada proses MFCC dengan algoritma genetika mampu meningkatkan alcurasi menjadi 88.8% Akan tetapi dengan noise yang lebih tinggi, sistem gagal bekerja dengan baik.
Teknik kuantisasi skalar terhadap nilai bispektrum yang dilanjutkan dengan proses wrapping dan transfomasi kosinus seperti yang dilakukan pada MFCC mampu meningkatkan robustness sistem terhadap noise dengan akurasi 99.5% dan 83% masing-rnasing untuk sinyal asli dan sinyal dengan penambahan noise 20 dB. Namun untuk noise 10 dB, teknik ini gagal bekerja dengan baik. Dari percobaan dengan teknik kuantisasi velctor, terlihat bahwa rata-rata nilai bispektrum di atas kuartil tiga adalah penduga terbaik bagi nilai bispektrum setiap channel dengan jumlah 400 channel. Selain itu nilai parameter yang optimum pada proses ekstraksi ciri dengan kuantisasi vektor dilanjutkan dengan proses wrapping dan transformasi kosinus pada sinyal dengan penambahan noise adalah jarak filter linear 75, jarak Elter logaritma 1.06 dan proporsi filter linear dan legaritma 30:20. Kinerja sistem menunjukkan peningkatan yang berarti dengan akurasi 88% dan 75.5% masing-masing untuk sinyal dengan penambahan noise 20 dB dan 10 dB. Namun demikian untuk sinyal asli justru lebih rendah, yaitu dengan akurasi maksimum hanya 94.5%. Hal ini berarti bahwa teknik ekstraksi ciri yang efektif tergantung dari kualitas sinyal masukan. Oleh karena itu sistem yang dikembangkan sebaiknya dilengkapi di bagian awalnya dengan kemampuan untuk menduga kualitas sinyal masukan.
Dari studi eksploratif terhadap nilai autokorelasi dan ragam sinyal suara, diperoleh bahwa kualitas sinyal dapat diidentifikasikasi dengan besaran yang dirumuskan sebagai negatif dari logaritma perkalian nilai absolut autokerelasi dari lag 1 hingga lag 21. Nilai ambang untuk membedakan sinyal sesuai kualitasnya dengan besaran tersebut adalah di antara 7 hingga 15. Jika nilai besaran tersebut kecil, maka teknik 1D-MFCC lebih sesuai untuk diterapkan. Sedangkan untuk hal lainnya, disarankan menggunakan teknik kuantisasi vektor terhadap nilai bispektrum sebagai pengekstraksi ciri. Berdasar nilai ambang inilah disusun prototipe sistem identifikasi pembicara menggunakan software Matlab.

Mel-Frequency Cepstrum Coefficients (MFCC) as speech signal feature extraction technique and integrated with Hidden Markov Model (HMM) as classifier to form a speaker identification system that more robust to Gaussian Noise. The experiments is focused on the subsystem of feature extraction, whereas in the subsystem of classifier, we use the HMM. In this research, we show the ineffectiveness of lD-MFCC as feature extraction in the noisy environment empirically, analysis the problem and propose some techniques for feature extraction to handle the problem. Next, we conduct a series of experiments to show the effectiveness of the propose methods. Finally, we make a comparison among methods to capture the characteristics of each and propose a prototype of speaker identification system.
According to the result, the main problem with 1D-MFCC is in the aspect of its input, i.e. power spectrum. This quantity is not stable enough with existing noise. In this research we replace the power spectrum by bispectrum that more robust to noise. Then, the propose methods is focused on how to extract the bispectrum value and integrate with HMM to form the speaker identification system. Firstly, 1D-MFCC extended into 2D-MFCC, so the technique workable for bispectrum value as the input. In order to improve the system performance, we use scalar and vector quantization for bispectrum value representation and continue with wrapping and cosines transform prior to classifier process.
The experiments show that the conventional method based on power spectrum (ID-MFCC) gives a good result for signal without addition by Gaussian noise, with 98.8% of accuracy. Nevertheless, with noise only 20 dB, the system performance drop significantly with accuracy below 50%. The noise canceling technique can improve the accuracy up to 77.7%, but fails for noise more than 20 dB. The 2D-MFCC that developed using bispectrum as speech signal feature gives 99.9% of accuracy for original signal and 88.8% for signal corrupted by 20 dB of noise. Compare with ID-MFCC, this system performance is higher. Nevertheless, for noise more than 20 dB, the system fails.
In order to improve the system performance, we propose scalar and vector quantization for representation the bispectrum value, and continue with wrapping and cosines transform prior to classifier process. The vector quantization technique yield the system more stable with noise, and gives the highest recognition compare with others, especially for signal corrupted by noise. The accuracy for signal with addition by 20 dB and 10 dB of noise are 89% and 75.5%, respectively. But, for original signal, the accuracy is only around 90%. It means the effective technique for feature extraction depend on the quality of input signal.
According to the exploration of autocorrelation of speech signal, it is shown that the signal quality can be divided by the negative value of multiplication of absolute value of its autocorrelation from lag 1 until lag 21. The threshold lies between 7 and 15. If the value is small enough, it is better for use the lD-MFCC technique. Otherwise, we advise to use the system based on bispectrum represented by vector quantization and continue by the wrapping and cosines transform prior to the classifier process. By using this threshold, we propose a prototype for speaker identification system developed by Matlab software.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
D958
UI - Disertasi Open  Universitas Indonesia Library