Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Dordrecht: Springer, 2016
572.8 APP
Buku Teks  Universitas Indonesia Library
cover
Adinda Dwi Putri
"Bioinformatika kerap digunakan oleh para peneliti untuk mempelajari berbagai penyakit yang ada pada tubuh manusia, salah satunya yaitu kanker payudara. Penelitian terhadap kanker payudara tersebut dilakukan dengan tujuan untuk menemukan jenis pengobatan terbaik bagi para pasien penderita kanker payudara. Data ekspresi gen merupakan salah satu komponen utama dalam penelitian mengenai pengobatan kanker payudara dan data tersebut dapat diperoleh dengan menggunakan alat dan teknologi microarray. Akan tetapi, seringkali ditemukan beberapa nilai yang hilang (missing values) pada data ekspresi gen yang dapat disebabkan oleh kesalahan teknis seperti kerusakan pada chip dan gambar. Adanya missing values juga dapat mengakibatkan masalah ketika proses analisis data selanjutnya, dimana terdapat metode analisis data yang memerlukan data lengkap seperti klasifikasi dan clustering. Oleh sebab itu, perlu dilakukan proses imputasi terhadap missing values agar hasil analisis data yang diperoleh lebih akurat. Pada penelitian ini, metode imputasi missing values yang digunakan yaitu SBi-MSREimpute. SBi-MSREimpute adalah metode imputasi berbasis biclustering dimana bicluster dibentuk berdasarkan suatu kriteria yang melibatkan skor Mean Squared Residue dan jarak Euclidean. Metode SBi-MSREimpute diimplementasikan pada data ekspresi gen pasien penderita kanker payudara stadium awal yang telah diberikan jenis obat MK-2206. Kinerja metode SBi-MSREimpute dilihat dengan membandingkan hasil imputasi metode SBi-MSREimpute dengan metode imputasi lain yaitu metode imputasi menggunakan weighted average berdasarkan skor Normalized Root-Mean-Square-Error (NRMSE). Hasil evaluasi dengan skor NRMSE tersebut menunjukkan bahwa kinerja metode SBi-MSREimpute dapat dipengaruhi oleh penentuan nilai k yang ada pada metode SBi-MSREimpute.

Bioinformatics is often used by researchers to study various diseases that exist in the human body, one of which is breast cancer. The research on breast cancer was conducted with the aim of finding the best type of treatment for breast cancer patients. Gene expression data is one of the main components in research on breast cancer treatment and this data can be obtained using microarray tools and technology. However, there are often missing values found in gene expression data that can be caused by technical errors such as damage to chips and images. The existence of missing values ​​can also cause problems during the data analysis process, where there are data analysis methods that require complete data such as classification and clustering. Therefore, it is necessary to carry out an imputation process for missing values ​​so that the data analysis results obtained are more accurate. In this study, the missing values ​​imputation method used was SBi-MSREimpute. SBi-MSREimpute is a biclustering-based imputation method where the bicluster is formed based on a criterion involving Mean Squared Residue and Euclidean Distance. In this study, the SBi-MSREimpute method was applied to the gene expression data of patients with early stage breast cancer who had been given the MK-2206 type of drug. The performance of the SBi-MSREimpute method is assessed by comparing the results of the imputation using SBi-MSREimpute method with other imputation methods, namely the imputation method using weighted average, based on the Normalized Root-Mean-Square-Error score (NRMSE). The results of the evaluation with NRMSE score showed that the performance of the SBi-MSREimpute method can be affected by the determination of k value in the SBi-MSREimpute method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fabian Alkautsar
"Analisis triclustering adalah metode data mining yang memiliki tujuan untuk mengelompokkan data tiga dimensi. Metode ini kerap kali digunakan untuk bidang bioinformatika. Pada penelitian ini digunakan metode analisis triclustering delta trimax. Delta Trimax pada intinya adalah metode analisis triclustering yang bertujuan untuk menemukan tricluster yang memiliki nilai MSR yang lebih kecil dari nilai threshold (o) yang telah ditentukan. Penggunaan silhouette coefficient pada penelitian ini adalah untuk membantu menentukan nilai threshold (o) tersebut. Hasil triclustering delta trimax nantinya dievaluasi dengan menggunakan Triclustering Quality Index (TQI). Genetic algorithm (GA) adalah sebuah algoritma pencarian yang efisien yang didasari oleh evolusi biologis dan genetika alam. Algoritma GA digunakan untuk menemukan solusi terbaik. Terdapat tiga operator genetika yang digunakan di dalam GA, yaitu seleksi, crossover, dan mutasi. Pada penelitian ini, digunakan data ekspresi gen tiga dimensi dari sel kanker paru-paru fase stabil (A549) yang diberi perlakuan obat kemoterapi Motexafin Gadolinium (MGd) dan mannitol sebagai grup kontrol, dimana ekspresi gen diamati dalam 6 kondisi dan 3 titik waktu. Tujuan dari penelitian ini adalah untuk mengetahui apa kumpulan gen yang memiliki respon baik terhadap pemberian obat kemoterapi MGd dan kondisi apa yang mempengaruhinya. Pada penelitian ini, himpunan tricluster yang memiliki kualitas terbaik berdasarkan Triclustering Quality Index (TQI) adalah himpunan tricluster yang dihasilkan dengan nilai o = 0,004. Berdasarkan himpunan tricluster tersebut, didapatkan informasi penting mengenai kumpulan gen yang memiliki respon baik terhadap pemberian MGd tapi efek obat MGd tidak bertahan di setiap titik waktu. Terdapat juga gen yang menunjukkan respon baik pemberian obat kemoterapi MGd, tetapi efektivitasnya tidak terlalu maksimal karena responnya beririsan dengan subjek yang hanya diberikan mannitol. Setelah itu, dilihat bagaimana hubungan gen yang berasal dari keseluruhan dataset dengan penyakit melalui gene ontology sebagai informasi tambahan untuk perkembangan obat MGd. Nilai fold enrichment tertinggi pada GO biological process adalah Cytoplasmic Translation, pada GO Cellular Component adalah cytosolic ribosome, dan pada GO Molecular Function adalah structural constituent of ribosome.

Triclustering analysis is a data mining method aimed at grouping three-dimensional data. This method is often used in the field of bioinformatics. In this study, the delta trimax triclustering analysis method is used. Delta Trimax essentially aims to find triclusters with Mean Squared Residue (MSR) values smaller than a predetermined threshold (o). The silhouette coefficient is used in this study to help determine the threshold (o). The results of the delta trimax triclustering are then evaluated using the Triclustering Quality Index (TQI). The genetic algorithm (GA) is an efficient search algorithm based on biological evolution and natural genetics. GA is used to find the best solution. There are three genetic operators used in GA: selection, crossover, and mutation. In this study, three-dimensional gene expression data from stable phase lung cancer cells (A549) treated with the chemotherapy drug Motexafin Gadolinium (MGd) and mannitol as a control group were used, where gene expression was observed under 6 conditions and 3 time points. The aim of this study is to identify which sets of genes respond well to MGd chemotherapy and which conditions influence these responses. The set of triclusters with the highest quality based on the Triclustering Quality Index (TQI) was obtained with o=0.004. From this set of triclusters, important information was obtained about the sets of genes that respond well to MGd, but the effect of MGd does not persist at every time point. There are also genes that show a good response to MGd chemotherapy, but its effectiveness is not maximized because the response overlaps with subjects that were only given mannitol. Subsequently, the relationship between genes from the entire dataset and the disease is observed through gene ontology as additional information for the development of MGd drugs. The highest fold enrichment value in the GO biological process is Cytoplasmic Translation, in the GO Cellular Component is cytosolic ribosome, and in the GO Molecular Function is structural constituent of ribosome."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elza Ibrahim
Jakarta: UI-Press, 2005
PGB 0452
UI - Pidato  Universitas Indonesia Library
cover
Azhar Ridha Lukman
"Dari semua spesies Candida yang ada, Candida krusei memiliki resistansi alami terhadap flukonazol, terapi lini pertama pada infeksi jamur. Salah satu faktor resistansi yang ada adalah adanya protein Abc1p yang dikode oleh gen ABC1. Penelitian eksperimental observasional ini menganalisis 16 whole-genome sequence (WGS) dari C. krusei dan membandingkannya terhadap gen ABC1 pada C. krusei lain dan homolognya pada Candid lain yang didapat dari database NCBI dan UniProtKB. Hasil analisis menunjukkan karakteristik dari gen Abc1p yang ditemukan memiliki common ancestor dengan gen serupa pada Candida lain. Hasil analisis juga memprediksi lokasi-lokasi pada sekuens yang diduga memiliki efek perubahan fungsi yang besar jika terjadi mutasi pada titik tersebut. Pemodelan 3D menemukan protein Pdr5 dari S. cerevisiae sebagai protein dengan struktur yang paling mirip dengan Abc1p.

Of all the Candida species, Candida krusei has a natural resistance to fluconazole, the first line therapy for fungal infections. One of the factors that contributes to C. krusei’s resistance is the Abc1p protein that is coded by the ABC1 gene. This experimental observational study analyzed 16 whole-genome sequences (WGS) of C. krusei and compared them with the ABC1 genes of other C. krusei and its homologues in other Candida species gathered from the NCBI and UniProtKB databases. Results showed the characteristics of the Abc1p gene. A common ancestor among the ABC1p protein and other similar proteins in other Candida species was found. A prediction was also made on the effects an amino acid mutation would have and the location of the mutation. Three-dimensional modeling of the Abc1p protein showed that the protein with the most similar structure is the Pdr5 protein from S. cerevisiase."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Prawira
"Studi mengenai kesehatan terus dikembangkan untuk meneliti dan mengetahui struktur penyusun makhluk hidup dalam dunia ini. Salah satunya adalah studi mengenai gen yang telah dikembangkan melalui teknologi microarray yang dapat menghasilkan data ekspresi gen. Namun sayangnya, studi ini sering terhambat akibat banyaknya informasi yang hilang pada data ekspresi gen tersebut, sehingga analisis lebih lanjut mengenai data ekspresi gen sulit dilanjutkan. Oleh karena itu, dibutuhkan suatu metode imputasi untuk mengisi hilangnya informasi tersebut sehingga analisis dapat dilanjutkan dan dikembangkan dengan lebih luas lagi. Pada penelitian ini, dikembangkan sebuah metode imputasi baru bernama SBi-BPCA-MSREimpute yang menggunakan perpaduan Bayesian Principal Component Analysis (BPCA), Biclustering serta jarak Euclidean dalam melakukan prediksi nilai imputasi. Metode ini menggunakan pendekatan hybrid dalam imputasinya, yaitu dengan metode BPCA (global) sebagai metode pra-imputasi, serta penggunaan metode nearest neighbour (lokal) dalam penentuan bicluster untuk memetakan gen yang memiliki pola sama dengan gen target. Penggunaan BPCA didasarkan pada struktur korelasi data yang besar, sehingga BPCA cocok digunakan untuk mereduksi dimensi data. Adapun penentuan nearest neighbour sebagai bentuk bicluster didasarkan pada nilai mean squared residual serta jarak Euclidean terhadap gen target. Akibatnya, bicluster yang terpilih merupakan gen kandidat yang memiliki sifat sama dengan gen target. Perhitungan nilai imputasi akhir dihitung menggunakan rata-rata terboboti pada anggota bicluster, serta normalized root mean squared error digunakan sebagai pengukuran evaluasi. Percobaan imputasi menggunakan metode SBi-BPCA-MSREimpute dilakukan pada data ekspresi gen sel kanker usus besar dengan percobaan tingkat missing rate 5%, 10%, 15%, 20%, 25%, 30%, 40%, serta 50%. Terdapat beberapa k neighbour gen yang diuji yaitu pada tingkat k = 5%,10%,15%,20%,25% dari banyaknya baris pada data. Pengujian menunjukkan bahwa SBi-BPCA-MSREimpute merupakan metode imputasi yang lebih baik daripada SBi-MSREimpute. Pengujian juga mendapatkan hasil bahwa nilai k = 5%,10%,15%,25% paling optimal digunakan pada data dengan missing rates 15% serta k = 20% paling optimal digunakan pada data dengan missing rate 10%. Berdasarkan missing rates, data dengan missing rates 5%, 10%, 15%, 20%, 25%, 30%, 40% paling optimal diimputasi menggunakan tingkat k = 5%, sedangkan data dengan missing rates 50% paling optimal diimputasi menggunakan tingkat k = 10%.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tandyo Triasmoro
"Epididimis adalah bagian dari alat reproduksi laki-laki yang berfungsi dalam pematangan sperma. Proses ini terjadi melalui interaksi antara sperma dan protein yang disekresikan oleh sel-sel epitel di epididimis. Protein-protein tersebut dikode oleh gen yang terekspresi secara spesifik di epididimis, salah satunya adalah Serpina1f. Akan tetapi, kebanyakan dari regulasi gen diatas belum dipahami dan perlu ditelilti, lebih lanjut. Serpina1f adalah salah satu gen yang menarik untuk di karakterisasikan. Gen ini diregulasi oleh androgen dan sudah dibuktikan oleg data yang diambil menggunakan mikroaray analisis.
Penelitian ini bertujuan untuk menganalisa struktur gen dari Serpina1f sebagai dasar untuk mempelajari fungsi dari gen tersebut lebih lanjut, dan juga distribusi jaringan untuk menyeleksi apakah gen Serpina1f hanya terekspresi di epididymis yang pada akhirnya akan menentukan apakah gen ini cocok dikembangkan menjadi kontrasepsi non-hormonal bagi pria.
Penelitian ini dilakukan sejak Mei 2012 sampai Februari 2013 di Laboratorium Departemen Biologi Universitas Indonesia dan dilaksanakan dengan menggunakan analisa bioinformatika dan analisa ekspresi gen. Hasil penelitian menunjukan bahwa gen Serpina1f sangat dominan pada daerah initial segment pada epididimis mencit sehingga cocok untuk dikembangkan menjadi kontrasepsi non-hormonal bagi pria.

Epididymis is a part of male reproductive system which functions in the process of sperm maturation. This process is occurs by interaction between sperm and proteins that secreted by epithelial cells in the epididymis. Those proteins are encoded by epididymis specific genes, one of them is Serpina1f. However, many of those genes are not entirely well-characterized and need to be elaborated further. Serpina1f is one of the attractive genes to be characterized. It is regulated by androgen and has been proved by previous data obtained by microarray analysis.
This research was aimed to analyze gene structure of Serpina1f gene as a basis for more exploration regarding the function of this gene, and also to identify tissue distribution to determine whether Serpina1f gene is expressed only in epididymis, so that this gene is suitable to be developed as a target for non-hormonal male contraception.
This experiment was conducted from May 2012 to February 2013 in the Laboratory of Department of Biology Universitas Indonesia and it was performed by in-silico analysis and gene expression analysis. The result shows that Serpina1f gene is very dominant in initial segment in epididymis, thus suitable as a candidate for non-hormonal male contraception.
"
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2013
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Banjarnahor, Evander
"Berdasarkan data WHO pada pertengahan Juli 2021 lebih dari 185,2 juta orang di seluruh dunia terinfeksi virus corona atau Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Virus ini menyerang penapasan manusia yang dapat mengakibatkan infeksi paru-paru pada manusia dan bahkan dapat menyebabkan kematian. Tercatat bahwa lebih dari 4 juta orang di seluruh dunia meninggal akibat terinfeksi virus corona. Di Indonesia sendiri pada pertengahan Juli 2021 tercatat lebih dari 2,4 juta orang ternfeksi virus corona dan lebih dari 65,4 ribu orang meninggal akibat terinfeksi virus corona. Berdasarkan data tersebut, perlu dilakukan analisis kekerabatan virus SARS-CoV-2 untuk mengurangi penyebaran dan memberikan batasan sosial dari negara satu dengan negara lainnya. Identifikasi kekerabatan dari virus covid-19 dan penyebarannya dapat dilakukan dengan cara pembentukan pohon filogenetik dan clustering. Pada penelitian ini pohon filogenetik akan dibangun berdasarkan metode Hierarchical Clustering dengan menggunakan metode Multiple Encoding Vector dan K-Mer berdasarkan translasi DNA kodon menjadi asam amino. Jarak Euclidean akan digunakan untuk menentukan matriks jarak. Penelitian ini selanjutnya menggunakan metode K- Means Clustering untuk melihat penyebarannya, dimana nilai k ditentukan dari jumlah centroid yang dihasilkan dari metode Hierarchical Clustering. Penelitian ini mengambil sampel barisan DNA SARS-CoV-2 dari beberapa negara yang tertular. Dari hasil simulasi, nenek moyang SARS-CoV-2 berasal dari China. Hasil analisis juga menunjukkan bahwa leluhur covid-19 yang paling dekat dengan Indonesia berasal dari India, Australia dan Spanyol. Selain itu dari hasil simulasi dihasilkan bahwa barisan DNA SARS-CoV-2 terdiri dari 9 cluster dan cluster keenam adalah kelompok yang memiliki anggota paling banyak. Hasil analisis juga menunjukkan bahwa metode ini sangat opitimal dalam pengelompokan data dengan nilai 97.4%.

Based on WHO data in middle of July 2021, Coronavirus or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is infecting more than 185.2 million people worldwide. The virus attacks human breathing, which can cause lung infections and can even cause death. More than 4 million people worldwide have died due to being infected with the coronavirus. In Indonesia alone, in mid-July 2021, there were more than 2.4 million people infected with the corona virus and more than 65.4 thousand people died from being infected with the corona virus. Based on those covid-19 survivor data, it is necessary to carry out a kinship analysis of the coronavirus to reduce its spreading. Identification of the kinship of the covid- 19 virus and its spread can be done by forming a phylogenetic tree and clustering. This study uses the Multiple Encoding Vector method and K-mer based on translation DNA codon to amino acid in analyzing sequences and Euclidean Distance to determine the distance matrix. This research will then use the Hierarchical Clustering method to determine the number of initial centroids and cluster, which will be used later by the K-Means Clustering method kinship in SARS-CoV-2 DNA sequence. This study took samples of DNA sequences of SARS-CoV-2 from several infected countries. From the simulation results, the ancestors of SARS-CoV-2 came from China. The results of the analysis also show that the closest ancestors of covid-19 to Indonesia came from India, Australia and Spain. In addition, the ancestors of SARS-CoV-2 came from China. The SARS- CoV-2 DNA sequence is also consisted of 9 clusters, and the sixth cluster is the group that has the most members. The results also show that this method is very optimal in a grouping of data with a value of 97.4%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bulan Firdanisa
"Penelitian bioinformatika sering diterapkan untuk mempelajari penyakit dalam tubuh manusia. Penelitian yang sampai saat ini masih aktif dilakukan ialah penelitian terhadap pasien penderita kanker. Tujuan dari berbagai penelitian ini yaitu untuk menemukan pengobatan terbaik bagi pasien penderita kanker. Salah satu pengobatan yang baru ini muncul dikenal sebagai imunoterapi. Imunoterapi memungkinkan sel-sel imun tubuh kita sendiri digunakan untuk melawan sel-sel kanker. Instrumen utama dalam penelitian terhadap efektifitas imunoterapi juga kasus bioinformatika lainnya ialah data ekspresi gen. Namun, pada data ekspresi gen seringkali ditemukan nilai yang hilang atau missing values yang biasanya disebabkan oleh kerusakan gambar atau kesalahan dalam proses hibridisasi. Keberadaan missing values pada data ekspresi gen dapat menyebabkan kesulitan pada analisis lebih lanjut, di mana banyak analisis ekspresi gen memerlukan data yang lengkap seperti klasifikasi dan pengelompokan. Oleh karena itu, perlu dilakukan imputasi terhadap missing values agar analisis yang dilakukan dapat lebih akurat. Pada penelitian ini dilakukan imputasi menggunakan metode Bi-BPCA. Bi-BPCA merupakan metode imputasi dengan mengombinasikan analisis biclustering dan imputasi BPCA. Metode Bi-BPCA diterapkan pada data ekspresi gen di sekitar kanker setelah dilakukan imunoterapi. Setelah itu, performa dari metode Bi-BPCA dilihat dengan membandingkan hasil imputasi metode Bi-BPCA dengan metode imputasi lainnya diantaranya imputasi menggunakan rata-rata baris, rata-rata kolom, dan metode imputasi BPCA melalui nilai NRMSE. Selain itu, koefisien korelasi Pearson digunakan untuk menghitung korelasi antara nilai hasil imputasi metode Bi-BPCA dengan nilai aslinya. Berdasarkan penelitian ini metode Bi-BPCA menghasilkan NRMSE kurang dari 0.6 untuk missing rate 1-30%, lebih rendah dibandingkan NRMSE dari metode imputasi lainnya. Kemudian, metode Bi-BPCA menghasilkan nilai koefisien korelasi Pearson mayoritas di atas 0.9 mendekati 1. Hasil ini menunjukkan bahwa metode Bi-BPCA menghasilkan nilai imputasi yang lebih baik untuk menggantikan missing values dibandingkan dengan metode imputasi BPCA, rata-rata kolom, dan rata-rata baris.

Bioinformatics research is often applied to study diseases in the human body. Research that is still actively being carried out is research on cancer patients. The aim of those studies is to find the best treatment for cancer patients. One treatment that has recently emerged is known as immunotherapy. Immunotherapy allows our body's own immune cells to be used to fight cancer cells. The main instrument in research on the effectiveness of immunotherapy as well as other cases of bioinformatics is gene expression data.. However, in gene expression data, it is often found missing values which are usually caused by image defects and errors in the hybridization process. The existence of missing values in gene expression data can cause difficulties in further analysis, where many analysis of gene expression requires complete data such as classification and clustering. Therefore, it is necessary to impute the missing values so that the analysis can be carried out more accurately. In this study, imputation was carried out using the Bi-BPCA method. Bi-BPCA is an imputation method by combining biclustering analysis and BPCA imputation. The Bi-BPCA method was applied to gene expression data around cancer after immunotherapy. After that, the performance of the Bi-BPCA method was seen by comparing the imputation results of the Bi-BPCA method with other imputation methods including imputation using row averages, column averages, and the BPCA imputation method through the NRMSE value. In addition, the Pearson correlation coefficient was used to calculate the correlation between the imputed value of the Bi-BPCA method and the original value. Based on this study, the Bi-BPCA method produces NRMSE values less than 0.6 for missing rates 1 to 30 percent, which is lower than NRMSE from other imputation methods. In addition, the Bi-BPCA method produces in a majority Pearson correlation coefficient above 0.9. These results indicate that the Bi-BPCA method produces better imputation values to replace the missing values."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zulfa Hidayah
"Epidemi dengue menyerang berbagai negara di dunia, khususnya negara-negara tropis dan subtropis. Infeksi dengue disebabkan oleh dengue virus (DV) yang memiliki serotype (DV1, DV2, DV3, dan DV4). Penelitian ini bertujuan untuk mendapatkan desain sekuens vaksin dengue yang bersifat tetravalen melalui studi bioinformatika. Protein envelope (E) pada keempat serotype DV digunakan untuk merancang sekuens vaksin. Multiple alignment digunakan untuk melihat similaritas 102 intra-serotype DV. Perwakilan dari tiap serotype DV diambil berdasarkan hasil multiple alignment, tingkat insedensi, dan letak geografis penemuan DV. Epitope ditentukan melalui server MULTIPRED dengan dua metode algoritma. Tiga epitope dari masing-masing metode algoritma, disubsitusi ke dalam backbone DV2 sehingga didapatkan dua rancangan sekuens vaksin dengue (vaksin A dan vaksin H). Rancangan sekuens tersebut dicari kesamaan strukturnya melalui server BLAST. Hasil analisis BLAST menghasilkan 91% identitas, 895 bits score, 0.0 E-value untuk vaksin A dan 92% identitas, 890 bit score, 0.0 E-value untuk vaksin H. Berdasarkan hasil analisis BLAST, kedua rancanan vaksin dengue tersebut memiliki struktur dan folding akhir yang serupa dengan backbone DV2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>