Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 44 dokumen yang sesuai dengan query
cover
Edwin Iskandar
Depok: Fakultas Teknik Universitas Indonesia, 2005
TA2610
UI - Tugas Akhir  Universitas Indonesia Library
cover
Samuel Zakaria
"Perkembangan jaman menyebabkan plant modern memiliki struktur yang lebih kompleks dengan sistem yang non-linier, yang terdiri dari banyak masukan dan keluaran. Dalam struktur yang lebih kompleks tersebut, memungkinkan juga terjadinya disturbance pada sistem. Maka dari itu, diperlukan sistem pengendali yang mampu mengatasi perubahan karakteristik secara otomatis yang disebabkan oleh perubahan kondisi lingkungan kerja.
Tujuan penelitian ini adalah untuk membandingkan performa antara pengendali backpropagation dan elman neural network terhadap suatu sistem. Data yang digunakan pada percobaan ini,menggunakan model matematis, data PPR, dan data helikopter. Kemudian juga dilakukan pengujian sistem Backpropagation dan Elman neural network terhadap reference input yang diberikan disturbance dengan metode online learning dan feedforward.
Hasil dari percobaan, menunjukkan karakteristik Elman lebih baik dibandingkan backpropagation dalam pengujian offline dan online dengan sistem yang diberikan gangguan. Hasil respon transient dari Elman adalah %OS sebesar 5,43% pada pengujian online dan selisih satu data lebih cepat pada settling time dibanding backpropagation pada pengujian offline.
Hasil pengujian online memiliki hasil yang baik pada kedua metode jika dibandingkan dengan pengujian offline dari segi persentase kesalahan tunak, karena mencapai nilai 0%.

Complexcity, there would be a probability of disturbance presences Therefore, we need a control system that able to automatically adapt with the characteristic changes that correspond to the environment conditions.
The purpose of this study was about to compare performances between backpropagation and elman neural network controller within the system. This experiment using mathematical model, data PPR, and data helicopter UAV. Trained backpropagation and Elman neural network will be tested by giving reference input and disturbance and also using method of feedforward and online learning.
The result of the experiment, shows the characteristics of Elman that is better than backpropagation in offline and online testing. The results %OS of Elman when using online learning is about 5.43% and there one a gap of single data, that shows elman faster on settling time than backpropagation when using offline system.
Online test outputs have good results on both algorithm than offline testing in terms of percentage of steady state error, because it reaches a value of 0%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63145
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ashari
"[ABSTRAK
Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.

ABSTRACT
This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise., This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise.]"
2015
T44464
UI - Tesis Membership  Universitas Indonesia Library
cover
"Sistem Pengaturan Lampu Lalu Lintas Terdistribusi adalah sebuah sistem lampu lalu lintas yang ditujukan untuk memenuhi kebutuhan akan kinerja pengaturan lampu lalu lintas yang cerdas dengan pengambilan data secara real-time. Sistem ini dapat melakukan penjadwalan dan pengaturan jaringan banyakpersimpangan secarareal-time yang tidak bisa dilakukan oleh sistem pengaturan lampu lalu lintas konvensional. Penerapan klasifikasi di dalam sistem ini digunakan untuk meningkatkan akurasi dari pengenalan mobil. Proses klasifikasi diimplementasikan menggunakan tiga algoritma Jaringan Syaraf Tiruan, yakni Backpropagation, FLVQ, dan FLVQ-PSO. Berdasarkan hasil ujicoba, dapat ditunjukkan bahwa algoritma Backpropagationmemiliki performa akurasi yang lebih baik dibandingkan dua algoritma JST yang lainnya."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Linda Rostiviani
"Dalam teori jaringan neural buatan (JNB) telah dikembangkan berbagai jenis jaringan neural yang berbeda. Diantaranya ada beberapa yang sudah cukup sering digunakan, misalnya jaringan propagasi balik dan jaringan swa-organisasi. Propagasi balik telah sukses digunakan untuk menyelesaikan berbagai permasalahan pengenalan, klasifikasi, aproksimasi, prediksi dan lain-lain. Namun jaringan propagasi balik membutuhkan waktu yang lama dalam pembelajarannya. Jaringan swa-organisasi mempunyai kemampuan klustering yang baik dan waktu pembelajaran yang singkat.
Penelitian ini akan merancang sebuah jaringan hibrid dengan cara menggabungkan propagasi balik dan swa-organisasi untuk mendapatkan kemampuan pengenalan yang lebih baik dan waktu pembeiajaran yang lebih singkat. Jaringan hibrid yang terbentuk, terdiri dari 2 modul, yaitu: modul swa-organisasi adaptif dan modul supervisi. Modul swa-organisasi adaptif bersifat tanpa pengarahan dan bobot-bobotnya dikontrol oleh pola masukan. Modul supervisi yang bersifat dengan pengarahan diarahkan oleh target yang telah ditentukan.
Karakteristik jaringan akan dilihat dengan kasus XOR. Kemampuan pengenalan jaringan diuji dengan menggunakan data aroma Martha Tilar dan konsentrasi etanol. Hasil penelitian menunjukkan jaringan hibrid dapat mengenali pola yang dilatihkan, pola yang tidak dilatihkan dan dapat mengidentifikasi kelas pola baru yang tidak diikutsertakan dalam pelatihan. Hasil perbandingan dengan jaringan propagasi balik standar memperlihatkan bahwa jaringan hibrid mempunyai kemampuan pengenalan yang lebih baik dan waktu pembelajaran yang lebih singkat."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Teknologi pengenalan suara saat ini telah mengalami perkembangan terutama dalam hal speech processing. Speech processing merupakan suatu cara untuk mengekstrak informasi yang diinginkan dari sebuah sinyal suara. Penelitian ini membahas sistem klasifikasi suara manusia male dan female."
620 JTEK 9 (1-2) 2010
Artikel Jurnal  Universitas Indonesia Library
cover
Dedi Darmawan
"Pengunanaan kamera CCTV Inframerah sangan membantu dalam penerapan sistem keamanan, dengan demikian pengambilan gambar akan lebih mudah terutama jika ruangan dalam kondisi gelap. Sehinggan proses pengenalan wajah dalam kondisi gelap dapat dilakukan sebagaimana kondisi normal. Metode yang digunakan untuk proses pengenalan adalah Jaringan Saraf Tiruan. Jaringan Saraf Tiruan (JST) adalah suatu metode komputasi untuk memodelkan suatu sistem. Hal ini memungkinkan Jaringan Saraf Tiruan untuk melakukan pembelajaran terhadap sinyal yang diterima oleh sistem. Metode yang digunakan adalah backpropagation yang terdiri atas lapisan masukan, lapisan tersembunyi dan lapisan keluaran. Pada penelitian ini analisis yang dilakukan adalah training data dengan data matriks image serta menggunakan Matriks Kovarian untuk mempermudah proses inputan.

The use of infrared CCTV camera is very helpfull in implementation of security system, because its capability to take images in the night so it can be used for identification process. The Method which performed in this identification process is Neural Network with back propagation. In this system is formed a network that consisting several input layers, hidden layers and output layers. The Data on input layer would be sent to hidden layer so the value of hidden weight can be obtained. From hidden layer, the value of hidden weight would be sent to output layer, so the value of output weight can be obtained. Difference between the output layer and the value of output weight is used to acknowledge error level in data identification. to obtain better identification result, the value of output weight is used as input data on input layer, so the same process is perfomed with better result. This is mentioned as back propagation process in Neural Network and this system is assesed capable to analyze the received data as input data."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51327
UI - Skripsi Open  Universitas Indonesia Library
cover
Dias Rima Sutiono
"Penelitian sebelumnya menunjukkan Multiwavelength UV-Vis spektrofotometer pada darah terinfeksi virus membuat perubahan optik dari darah dan mempunyai karakter pola-pola tertentu serta dapat dikenali dengan jaringan sataf tiruan Backpropagation dan algoritma PCA. Penyakit infeksi endemik di Indonesia salah satunya disebabkan oleh virus dengue. Penelitian ini, dilakukan pengukuran absorbansi optik darah Demam Dengue (DD), non DD dan orang sehat dengan spektrofotometer UV-Vis 190-1100 nm. Rentang 400-600 nm dengan 21 data input memperlihatkan pola-pola sangat berbeda dl."baDdingkan 190-400 dan 400-1100 nm. Kemudian spektmm absorbansi darah dianalisa menggunakan BP dengan hidden layer 20 nilai k:eberhasilan mengenali pola DD, non DD dan orang sebat mencapii 27%, l'edangkan PCA + BP 20 dan 10 dimensi dengan hidden layer 25 nilai keberhasilannya mencapai 60"10.

Previous studies showed that multiwavelength uv-vis spectrophotometer in blood virus infection can make changes in optical properties and bas character with certain patterns. These patterns are recognized by artificial neural network Backpropagation and algorithm PCA. One of endemic iofectious disease in Indonesia is caused by dengue viral iofection. In this studies, measurement of the optic absorbance blood from DF, non DF and healthy person by spectrophotometer UV-Vis in 190-1100 mn. Range 400-600 nm with 21 datas input show patterns very differ between DF, non DF and health person compared 190-400 and 400-llOOnm. Then blood absorbance spectrum pattem analyzed using BP with layer hidden 20 efficacy value recognize pattern DF, non DF and healthy people reach 27%, while PCA + BP with 20 and 10 dimension having layer hidden 25 efficacy value reaching 60".4."
Depok: Program Pascasarjana Universitas Indonesia, 2009
T29166
UI - Tesis Open  Universitas Indonesia Library
cover
Muhammad Athoillah
"Classification is a method for compiling data systematically according to the rules that have been set previously. In recent years classification method has been proven to help many people’s work, such as image classification, medical biology, traffic light, text classification etc. There are many methods to solve classification problem. This variation method makes the researchers find it difficult to determine which method is best for a problem. This framework is aimed to compare the ability of classification methods, such as Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Backpropagation, especially in study cases of image retrieval with five category of image dataset. The result shows that K-NN has the best average result in accuracy with 82%. It is also the fastest in average computation time with 17.99 second during retrieve session for all categories class. The Backpropagation, however, is the slowest among three of them. In average it needed 883 second for training session and 41.7 second for retrieve session.

Klasifikasi adalah metode untuk menyusun data secara sistematis menurut aturan-aturan yang telah ditetapkan sebelumnya. Dalam beberapa tahun terakhir metode klasifikasi telah terbukti membantu pekerjaan banyak orang, seperti klasifikasi citra, alat-alat medis, lampu lalu lintas, klasifikasi teks dll. Ada banyak metode yang dapat digunakan untuk memecahkan masalah klasifikasi, metode yang bervariasi ini membuat para peneliti menemukan kesulitan dalam menentukan metode manakah yang terbaik untuk menyelesaikan masalahnya. Artikel ini bertujuan untuk membandingkan kemampuan metode klasifikasi, seperti Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), dan Back-propagation khususnya dalam studi kasus image retrieval (pencarian gambar) dengan lima kategori dataset citra. Hasil penelitian menunjukkan bahwa K-NN memiliki nilai rata-rata akurasi terbaik dengan 82% dan yang tercepat dengan rata-rata waktu komputasi selama 17,99 detik untuk proses pencarian gambar pada semua kategori kelas. Sebaliknya, Backpropagation merupakan metode paling lambat di antara ketiganya. Metode ini rata-rata memerlukan waktu 883 detik untuk sesi pelatihan dan 41,7 detik untuk sesi pencarian gambar."
Surabaya: Institut Teknologi Sepuluh Nopember, Faculty of Mathematics and Science, Muhammad Athoillah, 2015
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5   >>