Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Rohayu Stin
"Graf prisma adalah graf yang bersesuaiandengan kerangkabangun ruangprisma. Hanya graf prismaberarahsiklik dengan pola tertentu yang diperhatikandalam penelitian ini. Graf prismaberarahsiklik dinotasikan 𝑌𝑚(𝑚≥3),di mana 𝑚adalah setengah jumlah simpul,dan memiliki 2𝑚 simpul dan3𝑚busur. Sebuah graf dapat direpresentasikanmenggunakansebuah matriks. Ada beberapa jenis matriks yang biasanya digunakan dalam merepresentasikan graf. Diantaranya adalah matriks adjacency, anti-adjacency, dan Laplacianyang dibahas dalam penelitian ini. Polinomial karakteristik dari matriks adjacency, matriks anti-adjacency, dan matriks Laplaciandari graf prisma berarah siklik 𝑌𝑚diperoleh beserta nilai-nilaieigen real dan kompleksnya. Metode yang digunakan untuk membuktikan hasil-hasil penelitian iniadalah operasi baris matriks dan faktorisasi. Adapununtukpolinomial karakteristik dari matriks anti-adjacency𝑌𝑚, hasilnya dibuktikan dengan mengamati subgraf terinduksi siklik dan asiklik dari 𝑌𝑚berdasarkan sebuah teorema yang ditemukan dalam penelitian sebelumnya.

A prism graph is a graph which corresponds to the skeleton of a prism. Only directed cyclic prism graphs with certain pattern are considered in this research. The directed cyclic prism graph is denoted 𝑌𝑚(m≥3),where 𝑚is half the number of vertices,and has 2𝑚vertices and 3𝑚edges.Agraph can be represented by usinga matrix. There are several types of matrices that are usually used in representing a graph. Among them aretheadjacency, anti-adjacency, and Laplacianmatriceswhich are discussedinthis research. The characteristic polynomialsof theadjacency matrix,theanti-adjacency matrix, and the Laplacian matrix of directed cyclic prism graph 𝑌𝑚are obtainedas well as their real and complex eigenvalues. The methods used toprovethe results are matrix row operations and factorizations.As for the characteristic polynomial of the anti-adjacency matrix of 𝑌𝑚, the results are proved byobserving the both cyclic and acyclic induced subgraphs of 𝑌𝑚according to a theorem invented in a previous research"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Poniam
"ABSTRAK
Sebuah graf friendship, baik tak berarah maupun berarah, dapat direpresentasikan dengan sebuah matriks adjacency maupun matriks anti-adjacency Bapat 2010 . Pada tesis ini diberikan polinomial karakteristik dan spektrum matriks adjacency dan anti-adjacency dari graf friendship tak berarah maupun berarah. Graf friendship berarah meliputi graf yang siklik dan asiklik, dengan graf asiklik dibahas untuk dua jenis saja. Beberapa kesimpulan yang menarik didapatkan dari hasil perbandingan polinomial karakteristik dan spektrum dari matriks adjacency dan matriks anti-adjacency.

ABSTRACT
Friendship graph, both undirected and directed graphs, can be represented by an adjacency matrix or an anti adjacency matrix Bapat 2010 . In this thesis, the characteristic polynomials and spectrums of adjacency and anti adjacency matrices for undirected and directed friendship graphs are presented and discussed. Directed friendship graphs cover both cyclic and acyclic graphs, where acyclic friendship graphs are defined for 2 types only. Some interesting results are obtained from the comparison between those characteristic polynomials and spectrums of adjacency matrices with the ones of anti adjacency matrices."
2017
T48134
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Sabili Robbi Solihin
"Sebuah graf berarah dapat direpresentasikan kedalam beberapa macam bentuk matriks, salah satunya adalah dengan matriks anti-adjacency. Matriks anti-adjacency merupakan sebuah matriks dimana entri-entri dari matriks ini dapat diinterpretasikan sebagai ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Paper ini akan berfokus pada matriks anti-adjacency dari gabungan graf lingkaran berarah. Matriks anti-adjacency adalah sebuah matriks persegi, oleh sebab itu dapat dicari persamaan karakteristik serta nilai eigen dari matriks tersebut. Untuk mencari bentuk umum persamaan karakteristik matriks anti-adjacency dari gabungan graf lingkaran berarah diperoleh dengan cara menghitung nilai determinan dan banyaknya subgraf-subgraf terinduksi pada setiap grafnya. Dengan mencari akar-akar dari bentuk umum persamaan karakteristik matriks anti-adjacency dari gabungan graf lingkaran berarah tersebut, maka akan didapatkan nilai eigen dari graf tersebut.

A graph could be represented as a matrix in many ways, one of which is an anti-adjacency matrix. Anti-adjacency matrix is a matrix whose entries shows whether there is a directed edge from a vertex to another one. This paper focuses on the anti-adjacency matrix of the union of directed cycle graphs. Anti-adjacency matrix is a square matrix, where we could find its characteristic polynomial and eigenvalues. The general form of characteristic polynomial can be found by counting the values of the determinants and the numbers of the cyclic induced subgraphs. Furthermore, the eigenvalues of the union of directed cycle graphs are derived from the general form of its characteristic polynomial."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library