Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15 dokumen yang sesuai dengan query
cover
Edy Soepranoto
"Di dalam dunia industri pelapisan metal ( metal finishing ) sering dijumpai pada proses electroplating ( Nickel-chrome ataupun zinc) telapi ada satu proses yang jarang diketahui tetapi dapat dijumpai dibanyak tempat terutama dalam industri rumah tangga ataupun otomotW yaftu proses anodizing pada alumunium. Dalam kaitannya dengan ini, penulis berusaha mencoba untuk mempelajari lebih jauh lagi masalah-masalah yang ada pada alumunium product terutama pada proses anodizing dengan pokok bahasan tentang pengaruh ketebalan proses anodizing terhadap daya tahan terhadap korosi pada alumunium serta kepekatan warna sebagai efek visual ( art). Dalam hal pengumpulan data-data, penulis mengadakan percobaan-percobaan secara langsung dan dilakukan langsung analisanya sehingga akan didapatkan sualu bentuk temuan yang baku yang bisa dibuat. Selain dari itu tentunya penulis juga berusaha mendapatkan bahan-bahan untuk referensi guna mendukung dan proses percobaan yang dilakukan. Dan percobaan yang dilakukan didapatkan hasil data yang cukup beragam dimana dari data tersebut dapat dikembangkan untuk dibuatkan suatu kesimpulan percobaan dan untuk memudahkan pembacaan data dibuatkan beberapa label, grafik, maupun gambar hasil percobaan. Kesimpulan yang didapatkan dari hasil percobaan yang dilakukan dapat diresumekan sebegai berikut: 1. Tingkat ketebalan anodizing berhubungan langsung dengan waktu proses, dimana semakin lama proses anodizingnya maka akan semakin tebal hasil yang terjadi, sehingga menunjukkan pula semakin kuat ketahanan terhadap korosi 2. Semakin lama proses anodizing akan mendapatkan kepekatan warna semakin baik dikarenakan semakin meratanya permukaan dari alumunium."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S37282
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yanita Firda Adelia
"Paduan aluminium 2024-T3 biasa digunakan dalam industri penerbangan seperti komponen pada pesawat terbang. Material ini digunakan karena sifatnya yang ringan dan cenderung tahan korosi jika dibandingkan dengan material selain aluminium, namun jika dibandingkan dengan paduan aluminium seri lainnya, paduan aluminium 2xxx cenderung memiliki ketahanan korosi yang rendah. Untuk memperbaiki sifat ini, maka dilakukan proses anodisasi dengan larutan elektrolit asam oksalat 0,5 M selama 30 menit. Proses anodisasi dilakukan pada temperatur 0, 10, dan 20°C serta rapat arus 15, 20, dan 25 mA/cm2.
Penelitian bertujuan untuk mengetahui pengaruh dari kedua variabel tersebut terhadap kekerasan mikro dan laju korosi tiap sampel. Didapat hasil bahwa nilai kekerasan mikro paling tinggi pada permukaan sampel didapat pada sampel 0°C - 20 mA/cm2 dengan nilai kekerasan sebesar 543 HV. Sedangkan ketahanan korosi paling baik diperoleh pada sampel 20°C - 20 mA/cm2 dengan laju korosi sebesar 0,00004 mm/year.

Aluminum alloy 2024-T3 is commonly used in the aviation industry as components of aircrafts. This material is used because of its light weight and good corrosion resistant when compared to material other than aluminum, but when compared to other series of aluminum alloy, aluminum alloy 2xxx tend to have low corrosion resistance. To improve this property, then carried out the anodizing process with 0,5 M oxalic acid for 30 minutes. Anodizing was carried out at temperatures of 0, 10, and 20°C also at current densities of 15, 20, and 25 mA/cm2.
The research aim is to know the influence of both these variables against the corrosion rate and micro-hardness of each samples. The result shows that the highest micro-hardness on the surface of samples is obtained at 0°C and 20 mA/cm2 with a value of 543 HV. While the most excellent corrosion resistance is obtained at 20°C and 20 mA/cm2 with the rate of corrosion of 0,00004 mm/year.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56339
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Dikdik Gumelar
"Magnesium Mg dan paduannya terdegradasi secara spontan dalam lingkungan fisiologis melalui peristiwa korosi sehingga berpotensi digunakan sebagai material implan biodegradabel. Namun diperlukan pengendalian laju degradasinya yang masih dianggap terlalu tinggi dalam tubuh manusia. Cara paling efektif dalam mengendalikan laju korosi bahan adalah dengan penambahan lapisan penghalang barrier di permukaan. Pada penelitian ini pengendalian korosi dilakukan dengan teknik anodizing untuk menghasilkan lapisan anodik oksida penghalang dan diuji coba pada paduan komersil AZ31. Untuk meningkatkan efisiensi lapisan oksida, dilakukan proses final coating dengan beeswax-colophony resin dengan tujuan menutup pori lapisan anodik oksida. Proses anodizing dilakukan pada tegangan konstan 5 volt dalam elektrolit 0.5 M Na3PO4 pada suhu 30 C 1 C dengan variasi waktu 2, 5, dan 10 menit. Pada waktu 2 menit belum terdeteksi lapisan, sedangkan pada 5 dan 10 menit terukur tebal lapisan 5 dan 11 ? m. Optimasi komposisi campuran beeswax-colophony menghasilkan rasio optimum 60:40, yang selanjutnya digunakan untuk proses final coating. Kinerja lapisan anodizing dan coating diuji dengan metode elektrokimia yaitu potentiodynamic polarization dan electrochemical impedance spectroscopy EIS . Hasil uji elektrokimia divalidasi dengan uji hilang berat secara invitro selama 14 hari dalam larutan ringer laktat pada suhu 37 C. Hasil uji korosi pada paduan AZ31 menunjukkan peningkatan ketahanan korosi bertahap yang diperlihatkan oleh kenaikan potensial korosi berturut-turut: -1.44, -1.42, -1.32, dan -1.19 VAg/AgCl dan penurunan arus korosi 9.11, 5.02, 1.92, 0.18 ? A/cm2 pada kurva polarisasi substrat; setelah coating; setelah anodizing; dan setelah anodizing dan coating. Kecenderungan yang sama diperoleh dari hasil uji hilang berat yang menunjukkan penurunan laju korosi berjenjang dari substrat, setelah coating; setelah anodizing; setelah anodizing dan coating berturut-turut yaitu 1.09, 0.49, 0.13, dan 0.01 mmpy. Hasil tersebut menunjukkan bahwa perlakuan anodizing dan coating terbukti dapat meningkatkan ketahanan korosi paduan AZ31 secara drastis sebesar 100 kali.

Magnesium Mg and its alloys are spontaneously degraded in physiological environments through corrosion events therefore potentially used as biodegradable implant materials. But it is necessary to control the degradation rate of Mg alloys that is still considered too high in the human body. The most effective way of controlling the corrosion rate of materials is by the addition of a barrier layer on their surfaces. In this study, corrosion control was performed by anodizing technique to produce anodic oxide barrier layer on AZ31 Mg alloy. To improve the coating efficiency, a final coating with beeswax colophony resin was conducted with the purpose to seal the pore in the anodic oxide layer. The anodizing process was carried out at a constant voltage 5 V in 0.5 M Na3PO4 electrolyte at 30 C 1 C with time variations of 2, 5, and 10 min. Within 2 minutes the layer has not been detected, while at 5 and 10 minutes the thicknesses were 5 and 11 m. Optimization of beeswax colophony mixture composition gives optimum ratio of 60 40, which is then used for final coating process. The anodizing and coating performance was tested and by electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy EIS and invitro weight loss method for 14 days, in lactated ringer solution at 37 C. The results of electrochemical test were validated by weight loss method. The corrosion test results in AZ31 alloys showed an increase in gradual corrosion resistance shown by the incremental corrosion potential increase 1.44, 1.42, 1.32, and 1.19 VAg AgCl and decreased corrosion currents 9.11, 5.02, 1.92, 0.18 A cm2 on the substrate polarization curve after coating after anodizing and after anodizing and coating. The same trend is obtained from the weight loss test results indicating a decrease in the tiered corrosion rate of the substrate, after coating after anodizing after anodizing and coating respectively are 1.09, 0.49, 0.13, and 0.01 mmpy. These results show that anodizing and coating treatment has been shown to significantly increase the corrosion resistance of AZ31 alloys by 100 times. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T51492
UI - Tesis Membership  Universitas Indonesia Library
cover
Zaki Vernando
"Anodizing adalah salah satu teknik yang digunakan untuk meningkatkan ketahanan korosi logam aluminium. Sayangnya, teknik ini memiliki beberapa kelemahan yang dapat menghambat pembentukan film oksida anodik dalam logam tersebut. Untuk mengatasi masalah ini, banyak senyawa organik telah ditambahkan ke larutan elektrolit yang digunakan dalam proses anodisasi ini. Penambahan senyawa organik ini bertujuan untuk meningkatkan laju pertumbuhan dan karakteristik film oksida anodik yang terbentuk nantinya.
Dalam penelitian ini, pengaruh penambahan Ethylene Glycol (EG) ke sifat-sifat film oksida anodik dalam lingkungan korosif dan laju pertumbuhan film oksida anodik diselidiki, yaitu dengan merekam kurva tegangan-waktu dari proses anodisasi, mengamati penampilan permukaan, mengamati bentuk morfologis film, mengukur ketebalan film, mengukur kekerasan film, dan menguji ketahanan film dalam lingkungan korosif. Proses anodisasi dilakukan pada arus konstan, yaitu 300 A / m2 dalam larutan 2M H2SO4 dengan suhu di bawah 10°C. Proses anodisasi dilakukan dalam tiga waktu yang berbeda, yaitu 30 menit, 45 menit, dan 60 menit. EG ditambahkan ke larutan elektrolit dengan konsentrasi 0, 10, 20, hingga 30%.
Hasil penelitian ini menunjukkan bahwa penambahan EG meningkatkan laju reaksi elektrokimia pada permukaan logam aluminium yang dibuktikan dengan peningkatan kemiringan pada kurva tegangan-waktu, yaitu dari 0,1 V / menit menjadi 0,6 V / menit sebagai EG konsentrasi meningkat dalam larutan. Lamanya waktu yang digunakan dalam proses anodisasi dan jumlah komposisi EG dalam larutan elektrolit mempengaruhi tingkat ketebalan film dan juga kekerasan film yang terbentuk. Karakterisasi awal sampel menunjukkan bahwa sampel yang dianodisasi dalam 45 menit memberikan hasil yang lebih baik dibandingkan yang lain. Uji ketahanan korosi yang dilakukan pada sampel anodisasi dalam waktu 45 menit menunjukkan bahwa semakin besar komposisi EG dalam larutan elektrolit membuat film oksida anodik yang terbentuk menjadi semakin lemah terhadap serangan korosi.

Anodizing is one of the techniques used to increase aluminum metal corrosion resistance. Unfortunately, this technique has several disadvantages that can inhibit the formation of anodic oxide films in the metal. To overcome this problem, many organic compounds have been added to the electrolyte solution used in this anodizing process. The addition of organic compounds aims to increase the growth rate and characteristics of anodic oxide films formed later.
In this study, the effect of adding Ethylene Glycol (EG) to the properties of anodic oxide films in a corrosive environment and the rate of growth of anodic oxide films was investigated, namely by recording the voltage-time curve of the anodizing process, observing the surface appearance, observing the morphological shape of the film, measuring film thickness, measure film hardness, and test film resistance in corrosive environments. The anodizing process is carried out at a constant current, which is 300 A / m2 in a 2M H2SO4 solution with temperatures below 10°C. The anodizing process is carried out in three different times, namely 30 minutes, 45 minutes and 60 minutes. EG is added to the electrolyte solution at concentrations of 0, 10, 20, up to 30%.
The results of this study indicate that the addition of EG increases the rate of electrochemical reaction on the surface of the aluminum metal as evidenced by an increase in the slope of the voltage-time curve, ie from 0.1 V / min to 0.6 V / min as the EG concentration increases in solution. The length of time used in the anodizing process and the amount of EG composition in the electrolyte solution affect the level of film thickness and also the hardness of the film formed. Initial characterization of the sample shows that the anodized sample in 45 minutes gives better results than the others. Corrosion resistance tests conducted on anodized samples within 45 minutes showed that the greater the composition of EG in the electrolyte solution made the anodic oxide film formed became weaker against corrosion attack.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wardah Citra Saraswati
"Pada penelitian ini dilakukan anodisasi menggunakan elektrolit 1 M KOH pada suhu 25°C selama 20 detik dengan variasi tegangan 10, 20, dan 30 V. Uji bioaktivitas dilakukan selama 14 hari didalam larutan Simulated Body Fluid (SBF) berdasarkan ISO 23271-2007. Pengamatan permukaan dengan mikroskop optik menunjukkan bahwa lapisan oksida anodik memiliki struktur berpori. Penampang lintang lapisan oksida diuji dengan FE-SEM menunjukkan ketebalan lapisan meningkat yaitu 199; 436; dan 1199 nm untuk lapisan yang terbentuk pada 10, 20, dan 30 V. Kekerasan lapisan oksida anodik sedikit meningkat: 327,80 ± 2,05; 332,40 ± 2,60; dan 342,80 ± 2,95 HV untuk tegangan 10, 20, dan 30 V, sedangkan substrat memiliki kekerasan 325,8 ± 5,54 HV. Uji Open Circuit Potential (OCP) menunjukkan kenaikan nilai potensial, hal ini sejalan dengan hasil uji polarisasi dimana rapat arus korosi menurun secara berurutan yaitu 1,99 x 10-7; 1,78 x 10-7; dan 3,65 x 10-8A/cm2 untuk masing-masing tegangan 10, 20, 30 V. Setelah uji bioaktivitas selama 14 hari, hasil uji SEM belum menunjukkan adanya deposisi apatit di permukaan sampel. Hal ini kemungkinan disebabkan oleh waktu uji yang relatif singkat, lapisan yang bersifat amorf, dan ukuran pori yang relatif kecil, yaitu nanometer.

In this study, anodization was carried out using 1 M KOH electrolyte at 25°C for 20 seconds with a voltage variation of 10, 20, and 30 V. Bioactivity tests were carried out for 14 days in a Simulated Body Fluid (SBF) solution based on ISO 23271-2007. Observation of the surface with an optical microscope shows that the anodic oxide layer has a porous structure. The cross-section of the oxide layer tested by FE-SEM showed an increased layer thickness of 199; 436; and 1199 nm for layers formed at 10, 20, and 30 V. The hardness of the anodic oxide layer increased slightly: 327.80 ± 2.05; 332.40 ± 2.60; and 342.80 ± 2.95 HV for 10, 20, and 30 V, while the substrate had a hardness of 325.8 ± 5.54 HV. The Open Circuit Potential (OCP) test shows an increase in the potential value, this is in line with the results of the polarization test where the corrosion current density decreases sequentially, 1.99 x 10-7; 1.78 x 10-7; and 3.65 x 10-8A / cm2 for each voltage 10, 20, 30 V. After bioactivity testing for 14 days, SEM test results have not shown the presence of apatite deposition on the sample surface. This is likely due to the relatively short test time, the amorphous layer, and the relatively small pore size, nanometer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Farhan
"

Lapisan anodik yang ditumbuhkan pada paduan AA7075 dengan metode hard anodizing tidak seragam karena lambatnya reaksi oksidasi pada presipitat. Dalam penelitian ini, pengaruh penambahan Etilen Glikol (EG) sebagai zat aditif pada elektrolit dalam proses hard anodizing pada logam paduan AA7075 diteliti melalui karakterisasi morfologi, sifat mekanik dan sifat korosi lapisan anodizing yang dihasilkan. Uji korosi metode elektrokimia pada larutan 3% NaCl + 1% HCl. Senyawa EG dipilih karena umum digunakan sebagai zat antibeku pada industri logam dan memiliki sifat inhibitor korosi dalam sistem pendingin. Penambahan EG pada elektrolit meningkatkan laju reaksi oksidasi dari presipitat yang terdapat pada substrat, sehingga menghasilkan struktur lapisan yang lebih seragam di sepanjang antarmuka oksida-logam. Namun konsumsi energi pada reaksi oksidasi presipitat menyebabkan berkurangnya oksidasi pada matrix aluminium sehingga lapisan yang dihasilkan menjadi lebih tipis. Selain itu, pelepasan gas oksigen yang terjadi selama proses oksidasi presipitat terjebak dalam lapisan membentuk pori sehingga kekerasan menurun dari 196,2 HV menjadi 117,8; 115,2; dan 107,7 HV masing-masing dengan penambahan 10, 20, dan 30 % EG. Ketahanan korosi lapisan anodik menjadi 30 mV lebih tinggi, nilai potensial korosi menjadi 10 mV lebih positif, arus korosi menjadi 80 µA/cm2 lebih rendah, dan nilai resistansi polarisasi naik 100 Ω lebih tinggi dengan penambahan 10% EG sedangkan pada konsentrasi EG yang lebih tinggi menurunkan ketahanan korosi lapisan. EG yang optimum untuk menghasilkan lapisan dengan sifat mekanik dan ketahanan korosi yang baik adalah 10%. Lapisan anodik yang mengandung EG sensitif terhadap hydrothermal sealing.

 


The anodic layer grown on AA7075 alloy with the hard-anodizing method is not uniform because of the slow oxidation reaction at precipitate. In this study, the effect of adding Ethylene Glycol (EG) as an additive to electrolytes in the process of hard anodizing on alloy metals AA7075 was examined through morphological characterization, mechanical properties and corrosion properties of the anodizing layer produced. Electrochemical method corrosion test on a 3% NaCl + 1% HCl solution. EG compounds are chosen because they are commonly used as antifreeze substances in the metal industry and have corrosion inhibitor properties in the cooling system. The addition of EG to electrolytes increases the rate of oxidation reactions from the precipitates found on the substrate, resulting in a more uniform layer structure along the metal-oxide interface. However, energy consumption in precipitate oxidation reactions leads to reduced oxidation in the aluminum matrix so that the resulting layer becomes thinner. In addition, the release of oxygen gas that occurs during the oxidation process of the precipitate is trapped in the pore-forming layer so that the hardness decreases from 196.2 HV to 117.8; 115.2; and 107.7 HV each with the addition of 10, 20 and 30% EG. The corrosion resistance of the anodic layer is 30 mV higher, the corrosion potential value is 10 mV more positive, the corrosion current is 80 µA/cm2 lower, and the polarization resistance value rises 100 Ω higher with the addition of 10% EG whereas at the higher EG concentration reduce coating corrosion resistance. The optimum EG for producing layers with good mechanical properties and corrosion resistance is 10%. Anodic layer containing EG is sensitive to hydrothermal sealing

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suryo Sembodo
"Paduan aluminium AA7075-T7351 merupakan paduan keras yang memiliki keunggulan sifat mekanis, ringan, dan dapat di recycle sehingga paduan ini banyak di aplikasikan sebagai material struktur. Untuk meningkatkan ketahanan korosi paduan tersebut diperlukan rekayasa permukaan sehingga umur pakai material ini menjadi lebih lama dengan cara anodisasi. Optimasi ketahanan korosi dan kekerasan mekanik diperoleh dengan variasi suhu elektrolit dan penambahan aditif etanol pada elektrolit asam sulfat. Morfologi dan ketebalan lapisan oksida yang dihasilkan diamati dari foto SEM, ketahanan korosi sampel diuji dengan metode elektrokimia, dan karakteristik sifat mekanis permukaan didapat dari uji kekerasan. Anodisasi pada suhu 0°C mampu meningkatkan ketebalan lapisan oksida hingga 46%, kekerasan mikro sampai dengan 83%, dan meningkatkan ketahanan korosi. Anodisasi pada suhu 0°C dengan penambahan etanol 10 vol% dalam elektrolit asam sulfat pada paduan aluminium AA7075-T7351 menghasilkan lapisan oksida paling tebal (75,75µm), kekerasan mikro paling besar (281.06 HV), serta ketahanan korosi paling tinggi (Icorr = 10-5 µA/cm2).
AA7075-T7351 aluminum alloy is a hard alloy that has the advantage of mechanical properties, lightweight, and can be recycled so that this alloy is widely applied as a structural material. To improve the corrosion resistance of these alloys, surface engineering is needed so that the lifetime of this material becomes longer by anodizing. Optimization of corrosion resistance and mechanical hardness is obtained by variations in electrolyte temperature and the addition of ethanol into sulfuric acid electrolytes. The morphology and thickness of the resulting oxide layer were observed from SEM photographs, the corrosion resistance of the samples was tested by electrochemical methods, and the characteristics of surface mechanical properties were obtained from hardness tests. Anodization at 0 ° C can increase the thickness of the oxide layer by up to 46%, micro hardness up to 83%, and increase corrosion resistance. Anodization at 0 ° C with the addition of 10 vol% ethanol in sulfuric acid electrolyte in aluminum alloy AA7075-T7351 resulted in the thickest oxide layer (75.75µm), the greatest micro hardness (281.06 HV), and the highest corrosion resistance (Icorr = 10-5 µA/cm2)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Vika Rizkia
"The anodizing process was conducted in an Al7xxx aluminum alloy with silicon carbide which yielded a non-uniform thickness of anodic film with cavities, micro-pores and micro-cracks within it. This phenomenon occurred due to the presence of Silicon Carbide (SiC) particles within the Aluminum Matrix Composite (AMC), which impedes the initiation and growth of the protective anodic alumina oxide layer. Therefore, cerium sealing has been considered as the cheapest and simplest post treatment to remedy the poor anodic alumina oxide film in order to further enhance the corrosion resistance in aggressive circumstances. This paper examined the protection effect of an integrated layer which was composed of an anodized oxide layer and cerium deposits on an Al7075/SiC composite. Electrochemical Impedance Spectroscopy (EIS) was used to examine the corrosion protection effect and the corrosion behavior of an integrated layer in 3.5% sodium chloride (NaCl) solution at room temperature. In this study, anodizing of Al7075/SiC was carried out in a sulfuric acid H2SO4 solution at current density values of 15, 20, and 25 mA/cm2, respectively at room temperature, 0oC and -25oC for 30 minutes. Subsequently, cerium sealing was conducted in a cerium choloride plus hydrogen peroxide (CeCl3.6H2O + H2O2) solution at room temperature and pH 9 for 30 minutes. The best protection effect was found for Al7075/SiC, anodized at 0oC. Field Emission-Scanning Electron Microscope (FE-SEM) examination confirmed that the enhancement of corrosion resistance was due to the cerium deposit formed on the entire surface of the oxide anodized layer."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:7 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Afiten Rahmin Sanjaya
"Pada penelitian ini preparasi komposit busa nikel termodifikasi mangan oksida dan graphene dan uji performanya sebagai elektroda untuk superkapasitor telah berhasil dilakukan. Karakterisasi menggunakan SEM-EDX dan spektroskopi Raman menunjukkan morfologi berupa bercak putih dari keberadaan mangan oksida pada kerangka busa nikel. Sedangkan karakterisasi dengan Spektroskopi Raman menunjukkan adanya puncak peak yang mengindikasikan D band dan G band dengan rasio ID/IG yang dapat menentukan keberadaan material elektroaktif graphene. Uji elektrokimia menggunakan teknik Cyclic Voltammetry (CV) menunjukkan nilai kapasitansi spesifik tertinggi pada Busa nikel/MnO2/Graphene dalam electrolit hydrogel PVA-Na2SO4 yaitu sebesar 806,16 F/g pada scanrate optimum 25 mV.s-1. Uji elektrokimia menggunakan teknik Electrochemical Impedance Spectroscopy (EIS) menunjukkan performa terbaik adalah pada Busa nikel/MnO2/Graphene dalam electrolit Na2SO4 sebesar 348,42 F/g .Uji elektrokimia menggunakan teknik Galvanostatic Charge- discharge (GCD) menunjukkan performa terbaik adalah pada Busa nikel/MnO2/Graphene dalam electrolit PVA-Na2SO4 pada arus yang diberikan sebesar 2 mA, dengan nilai kapasitansi spesifik mencapai 1680,67 F/g, densitas energi sebesar 43,60 Wh/kg dan densitas daya sebesar 838,8 W/kg.

In this study, the preparation of a modified nickel foam composite of manganese oxide and graphene and its performance test as an electrode for a supercapacitor have been successfully carried out. Characterization using SEM- EDX and Raman spectroscopy showed morphology in the form of white spots from the presence of manganese oxide in the nickel foam framework. Meanwhile, the characterization using Raman Spectroscopy showed the presence of peaks indicating D band and G band with ID/IG ratio which can determine the presence of graphene electroactive material. Electrochemical test using Cyclic Voltammetry (CV) technique showed the highest specific capacitance value in nickel/MnO2/Graphene foam in hidrogel electrolyte PVA-Na2SO4, which was 806,16 F/g at an optimum scanrate of 25 mV.s-1. The electrochemical test using the Electrochemical Impedance Spectroscopy (EIS) technique showed the best performance was on nickel/MnO2/Graphene foam at 348,42 F/g. The electrochemical test using the Galvanostatic Charge-discharge (GCD) technique showed the best performance was on nickel/MnO2/Graphene in hidrogel electrolyte PVA-Na2SO4 at a given current of 2 mA, with a specific capacitance value of 1680,67 F/g, an energy density of 43,60 Wh/kg and a power density of 838,8 W/kg."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhena Nugraha
"Aluminium adalah salah satu logam yang banyak digunakan di dunia otomotif seperti pada piston. Piston aluminium yang ringan akan mempertinggi efisiensi engine. Namun karena sifat dasar aluminium yang begitu lunak maka perlu perlakuan khusus agar sifat kekerasan, ketahanan terhadap aus, dan sifat ketahanan terhadap mulurnya dapat ditingkatkan. Salah satu metode perlakuan akhir yang dapat digunakan adalah anodisasi. Dalam proses anodisasi ini permukaan aluminium dipaksa untuk membentuk suatu lapisan yang berasal dari oksidanya (Al2O3), yang bersifat keras dan tahan aus. Untuk mencapai tujuan tersebut maka dilakukanlah penelitian terhadap parameter proses seperti jenis larutan, konsentrasi, dan tegangan. Jenis larutan yang dipakai pada penelitian ini adalah larutan asam sulfat ditambah asam oksalat. Dengan memvariasikan konsentrasi asam oksalat (0,5%, 1%, 1,5%, 2,4%, dan 4,8%) dan tegangan (20V, 25V, dan 27,5V) maka diperoleh kondisi optimum untuk mendapatkan sifat-sifat lapisan yang diinginkan. Kondisi optimum yang diperoleh adalah sebagai berikut: konsentrasi asam sulfat 14,6% + oksalat 2,4 %, pH = 1, waktu 60 menit, temperatur 23-25oC, tegangan 25V, dan rapat arus 1,30 A/dm2 dengan menghasilkan ketebalan lapisan optimum 25 µm dan kekerasan maksimum sebesar 250 VHN. Selain itu pada penelitian ini dikaji hubungan antara beberapa parameter yang didapatkan seperti konsentrasi asam oksalat, rapat arus, tegangan, ketebalan dan kekerasan lapisan anodik.

Aluminium is one of metals that used many in Worlds of Otomotif like at piston. Light Aluminium Piston will heighten efficiency of the engine. But, because the behaviour of aluminium which so soften hence needing special treatment to improve the hardness, the creep resistance, and the abrasion resistance. One of the finishing methods is the anodizing. In the anodizing, aluminium surface is forced to form an oxide film (Al2O3). In this research, the parameters of process like electrolyte solution type, concentration, and voltage are combined to get the optimum properties of anodic coating. The sulphuric-oxalic acid is used as electrolyte solutions with combined concentration of oxalic acid ( 0,5%, 1%, 1,5%, 2,4%, and 4,8%) and used voltage ( 20V, 25V, and 27,5V) hence obtained optimum condition to get the wanted coating properties. The optimum condition are: 14,6% sulfhuric acid + 2,4% oxalic acid, pH = 1, 60 minutes, 23-25oC, 25V, and current density 1,30 A / dm2 that give the optimum anodic coating: 25 µm and 250 VHN. Beside that, in this research is studied the relation between some parameters that be compared with theory in some literatures."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T20975
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>