Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
M. Iqbal Abdi Tanjung
"ABSTRAK
Pertimbangan akan konsumsi energi dan efeknya terhadap lingkungan telah membawa industri heating, ventilating and air conditioning (HVAC) untuk mengembangkan unit yang lebih efisien. Air handling unit (AHU) adalah salah satu komponen utama dalam sistem HVAC yang telah mengalami peningkatan untuk efisiensi energi melalui penambahan area permukaan coil, dan tentu berpengaruh pada ukuran unit. Variasi dari model-model AHU membutuhkan standar pengetesan dan rating dan telah terdapat petunjuknya pada ASHRAE standard 37. Standar tersebut mensyaratkan penambahan plenum pada bagian outlet dan inlet (jika space tersedia). Adanya persyaratan tersebut membuat pengujian pada unit dengan konfigurasi vertikal akan menjadi sulit karena ada keterbatasan space pada laboratorium uji. Penelitian ini menggunakan pendekatan komputasi untuk menganalisis efek dari variasi inlet ducting, antara lain variasi dari panjang ducting yang digunakan, variasi floor distance dan tiga alternatif geometri inlet
ducting. Analisa yang dilakukan termasuk pada profil aliran udara dari visualisasi vektor kecepatan udara, profil kecepatan sepanjang garis vertikal, serta rata-rata dan distribusi kecepatan dan tekanan udara pada bidang horizontal. Hasil penelitian menunjukkan bahwa panjang ducting mempunyai efek signifikan pada profil kecepatan, semakin
pendek ducting semakin besar perbedaan yang terlihat. Perbedaan floor distance dengan panjang ducting yang sama tidak mempunyai pengaruh yang terlalu besar terhadap aliran udara di dalam ducting. Tiga alternatif geometri menunjukkan profil kecepatan yang berbeda-beda, alternatif tiga menunjukkan profil yang paling mendekati base case, diikuti alternatif satu sedangkan perbedaan signifikan terlihat pada alternatif dua. Karena laju aliran ditetapkan pada nilai yang sama, maka rata-rata kecepatan udara pada setiap case adalah sama. Alternatif satu dan dua menghasilkan perbedaan tekanan yang signifikan dibandingkan base case, sedangkan case lain mempunyai rentang tekanan yang sama dengan base case. Dari aspek distribusi kecepatan dan tekanan, case dengan panjang ducting 8 in, panjang ducting 4 in, floor distance 9 in, floor distance 6.5 in serta alternatif
tiga mempunyai hasil yang relatif sudah mirip dengan base case, sedangkan case yang lain mempunyai perbedaan yang signifikan dengan base case. Dengan semua perbandingan, disimpulkan bahwa ada tiga konfigurasi yang bisa menjadi solusi untuk mengurangi space pada inlet ducting namun perbedaan yang tidak signifikan dengan base
case, yaitu ducting dengan panjang 8 in, panjang ducting 4 in dan alternatif tiga. Untuk penelitian berikutnya, bisa dilakukan eksperimen pada unit AHU untuk mengetahui apakah parameter kecepatan dan tekanan di sekitar hulu dari fan adalah faktor utama yang dapat mempengaruhi performa dari fan dan selanjutnya geometri lain bisa dieksplorasi untuk menghasilkan geometri yang lebih optimal dan space yang lebih sedikit.

ABSTRACT
Consideration of energy consumption and its impact on the environment has been driving the heating, ventilating, and air conditioning (HVAC) industry to develop more energyefficient units. The Air Handling Unit (AHU) is one of the important components of the HVAC system that has undergone a lot of improvements in terms of energy efficiency through increased coil surface area, thus its unit size. Variation of AHU models requires energy performance testing and rating standard which is currently guided by ASHRAE Standard 37. The standard requires to install plenum on outlet and inlet (if the space allowed) position of the unit. This requirement can compound the testing of vertical unit since there is height limitation on the testing laboratory. This study uses a computational approach to examine the effect of inlet ducting variation, which are ducting length variation, floor distance variation and another three alternative inlet geometry. Analysis including the airflow pattern from the visualization of velocity vector, velocity profile along vertical line, velocity and pressure average and distribution along the horizontal section. The result shows that the ducting length has markable effect on velocity profile, the smaller the distance the bigger the effect. Different floor distance with similar ducting length has not much effect on velocity profile. Three alternative ducts give different velocity profile, the alternative number three gives the most similar velocity profile with the base case, followed by alternative number one and significant difference is spotted at alternative number two. Since the air flowrate is set to the same value, the velocity average is on the relatively same value on every cases. Alternative number one and two give significant difference on the pressure, while the other cases gives relatively same pressure with the base case. From the aspect of velocity and pressure distribution, the case with 8 in and 4 in duct length, 9 in and 6.5 in floor distance and alternative number three give relatively close value with the base case, while the other cases have significant different value. With all of the comparison, we came to conclusion that there are three configuration that can be the solution as alternative inlet ducting, with less space used and not big difference air behavior with the base case, which are the 4 in duct length, 8 in duct length and alternative number three. For the next project, experiment can be conduct to confirm whether the velocity and pressure distribution upstream the fan are the main factor that affect the fan performance and one can explore another geometry that can produce similar air behavior with less space needed."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ega Leonar Soekarno
"Ketika kereta api berkecepatan tinggi memasuki ruang terbatas seperti terowongan, udara di dalam terowongan mengalami kesulitan untuk menyebar di sekitarnya karena ruang udara yang terbatas. Oleh karena itu, ia menghasilkan gelombang tekanan yang merambat melalui panjang terowongan ke portal keluar dengan kecepatan suara. Perubahan tekanan udara dan implikasinya terhadap keselamatan pengoperasian kereta api, kenyamanan penumpang, dan dampak lingkungan yang ditimbulkan oleh kereta api berkecepatan tinggi yang memasuki terowongan merupakan bagian penting dari aerodinamika kereta api. Ini juga merupakan masalah utama untuk membiarkan kereta berjalan pada kecepatan yang lebih tinggi. Berbeda dengan di udara terbuka, kereta api yang memasuki terowongan bertindak sebagai piston yang bergerak melawan udara yang menempati ruang terowongan yang dibatasi oleh dinding terowongan dan dengan demikian, "efek piston" dihasilkan. tesisnya bertujuan untuk menjelaskan parameter yang mempengaruhi kecepatan udara dan medan tekanan yang diinduksi, menciptakan efek piston di terowongan. Model kereta api dan terowongan yang berskala dan disederhanakan diikuti dengan simulasi numerik telah dilakukan untuk menganalisis kontur dan amplitudo kecepatan dan tekanan udara yang berfluktuasi di dalam terowongan dan di dalam kereta. Model ini akan menjadi model standar yang digunakan dalam percobaan ini untuk menyelidiki efek aerodinamis. Simulasi menggunakan CFD komputasi dengan tipe analisis transien.

When a high-speed train enters a confined space such as a tunnel, the air inside the tunnel has difficulty diffusing around it because of the restricted airspace. Hence, it generates a pressure wave that propagates through the tunnel’s length to the exit portal at the speed of sound. Air pressure change and its implications on the safe operation of trains, passengers comfort, and environmental impact caused by a high-speed train entering a tunnel are important parts of train aerodynamics. It is also a key issue to let trains run at a higher speed. Unlike the case in the open air, a train that enters a tunnel acts as a piston that moves against the air that occupies the tunnel space which is constrained by the tunnel walls and thus, a “piston effect” is generated. his thesis aimed to explain the parameters affecting the induced air velocity and pressure fields, creating the piston effect in the tunnel. Scaled and simplified model of the train and tunnel followed with numerical simulations have been carried out to analyzed the contour and amplitude of fluctuating air velocity and pressure in the tunnel and on the train. The generic train model to represent the original high-speed train inside a tunnel. This model will be the standard model used in this experiment to investigate the aerodynamic effect. The simulation uses computational CFD with transient analysis type."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faiq Nurzaman
"

Kenyamanan termal adalah penilaian subjektif dari lingkungan termal yang cocok oleh pikiran individu. Standarisasi kenyamanan termal penting untuk menciptakan lingkungan dalam ruangan yang optimal. Oleh karena itu, beberapa standar telah digunakan selama beberapa dekade untuk mengukur kenyamanan termal berdasarkan suhu, kecepatan udara, dan kelembapan. Selain itu, panas ruangan dari penghuni dan barang lainnya juga berperan besar dalam mempengaruhi parameter tersebut. Ada dua pendekatan umum untuk mendapatkan variabel yang dibutuhkan dalam menentukan kenyamanan termal: audit ruangan dan simulasi. Audit ruangan adalah pendekatan yang paling nyata untuk mengukur parameter kenyamanan termal ruangan tertentu. Di sisi lain, pendekatan simulasi banyak digunakan dalam tahap desain sebuah bangunan. Untuk melakukan simulasi, setiap detail ruangan yang diukur harus diperhitungkan untuk melakukan pendekatan simulasi. Pada tesis ini parameter kenyamanan termal diukur di Auditorium Makara Art Center (MAC). Selain itu juga dibuat desain 3D auditorium yang sesuai dengan auditorium untuk mendapatkan akurasi simulasi dibandingkan dengan data sebenarnya. Untuk melakukan simulasi situasi yang paling mirip, beberapa skenario simulasi dengan bentuk diffuser dan parameter panas yang berbeda dilakukan menggunakan ANSYS Fluent sesuai dengan kondisi sebenarnya. Kondisi aktual suhu auditorium bervariasi dari 22,9 C hingga 24,1 C. Sedangkan suhu simulasi skenario keseluruhan menyimpang dari 0,1% hingga 52,63%. Simulasi kecepatan udara, di sisi lain, memiliki deviasi yang relatif lebih tinggi dibandingkan dengan simulasi suhu.

 


Thermal comfort is the subjective assessment of a suitable thermal environment by individual minds. Standardization for thermal comfort is important to create an optimal indoor environment. Therefore, several standards have been used over the decades to measure thermal comfort by temperature, air speed, and humidity. In additional, room heat from the occupants and other stuffs also plays a huge role in affecting those parameters. There are two general approaches to obtain the variables required in determining thermal comfort: room audit and simulation. Room audit is the most tangible approach to measure the thermal comfort parameters of a particular room. On the other hand, simulation approach is widely used in the design phase of a building. To conduct a simulation, every details of the measured room must be taken into account to conduct the simulation approach. In this thesis, thermal comfort parameters were measured in Makara Art Center (MAC) Auditorium. Additionally, a 3D design of the auditorium were also made in accordance to the auditorium to obtain the accuracy of simulation compared with the actual data. To conduct the most similar situation of the simulation, several simulation scenarios with different diffuser shape and heat parameters were conducted using ANSYS Fluent in accordance with the actual condition. The actual condition of the auditorium’s temperature varies from 22.9 C up to 24.1 C. Meanwhile, the simulation temperature of the overall scenarios deviates from 0.1% up to 52.63%. Air velocity simulation, on the other hand, has a relatively higher deviation compared to the temperature simulation. 

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library