Ditemukan 4 dokumen yang sesuai dengan query
Prima Dewi Purnamasari
"
Terdapat dua masalah besar yang diselesaikan dalam disertasi ini, yaitu masalah pemrosesan sinyal dan masalah aplikasi sinyal EEG dalam pengenalan keadaan emosi. Masalah tersebut diselesaikan dengan metode kecerdasan komputasional yang terdiri dari bagian utama, ekstraksi fitur dan klasifikasi. Pada bagian ekstraksi fitur, pada disertasi ini dibahas penggunaan metode konvensional ekstraksi fitur berbasis power spectrum yaitu dengan Discrete Wavelet Transform DWT , dan penggunaan metode baru ekstraksi fitur yang diajukan yaitu analisis bispektrum dengan filter piramida ...
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
D2271
UI - Disertasi Membership Universitas Indonesia Library
Fulky Hariz Zulkarnaen
"
Pada penelitian ini metode ekstraksi fitur dengan metode RWB akan dibandingkan dengan metode Bispectrum-Gaussian untuk menentukan jenis ekstraksi fitur yang lebih baik untuk klasifikasi sinyal EEG, selain itu akan klasifikasi dilakukan dengan menggunakan jenis model ANN dan CNN dengan variasi dimensi data yang berbeda untuk mengetahui pengaruh layer konvolusi terhadap hasil klasifikasi. Pada metode RWB autokorelasi akan dihitung untuk membentuk matriks cumullant orde ke-3 untuk kemudian dilakukan dekomposisi DWT 5 tingkatan untuk dihitung energi relatif ...
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Kandika Bagaskara
"
ABSTRAK
Emosi merupakan hasil dari aktivitas sensorik manusia baik sadar maupun tidak sadar yang dipicu oleh suatu objek atau situasi yang dialami manusia. Dalam dunia medis, emosi sangat berperan dalam kesembuhan pasien, tenaga medis sering kali mempertimbangkan emosi pasien untuk pengambilan keputusan langkah medis yang harus ditempuh. Saat ini, sistem pendeteksi emosi yang banyak digunakan adalah menggunakan raut wajah, namun sistem ini masih kurang bisa membantu tenaga medis dikarenakan ada pasien yang tidak mau atau tidak ...
"
2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Mohamad Ivan Fanany
"
ABSTRACT
This study describes bispectrum pattern analysis and quantization for identifying speaker in noisy environment. Direct, non-parametric, bispectrum analysis and estimation was performed before quantization and classification process. As for reliable quantization approach this study applied an algorithm of vector quantization method using combined Self Organizing Feature Map (SOFM) and Learning Vector Quantization (LVQ) neural network, to quantize bispectrum of speech data. Since there is no prior knowledge on bispectrum data distribution to determine class information, ...
"
1998
T-Pdf
UI - Tesis Membership Universitas Indonesia Library