Ditemukan 2 dokumen yang sesuai dengan query
Melki Adi Kurniawan
"Mengembangkan onsite-EEW (Earthquake Early Warning) merupakan masalah yang menantang karena keterbatasan waktu dan jumlah informasi yang dapat dikumpulkan sebelum peringatan dikeluarkan. Pendekatan yang dapat dilakukan untuk mencegah bencana akibat gempabumi adalah dengan memprediksi tingkat percepatan tanah di suatu lokasi menggunakan sinyal gelombang-P awal dan memberikan peringatan sebelum puncak percepatan tanah yang besar terjadi. Dalam kondisi sebenarnya, keakuratan prediksi merupakan masalah yang paling penting untuk sistem peringatan dini gempabumi. Pada penelitian ini mengimplementasi metode berbasis kecerdasan buatan untuk memprediksi tingkat getaran gempabumi secara dini, ketika gelombang P tiba di stasiun seismik. Sebuah model CNN dibangun untuk membuat prediksi dengan menggunakan small window 3 detik awal gelombang P dari rekaman accelerometer. Model ini dibangun dengan dataset dengan input gelombang seismik dengan variasi 3,2 dan 1 detik data gempabumi di wilayah Jawa Barat 2017 hingga 2023 dengan pembagian 80% data latih,, 10% data validasi dan 10% data uji . Dari evaluasi model terbaik, skema yang diusulkan mendapatkan akurasi 99.30%±0.63% dengan data uji.
Developing onsite-EEW (Earthquake Early Warning) is a challenging problem due to the limited time and amount of information that can be gathered before a warning is issued. A possible approach to preventing earthquake-induced disasters is to predict the level of ground acceleration at a site using early P-wave signals and provide warnings before large ground acceleration peaks occur. In actual conditions, the accuracy of prediction is the most important issue for earthquake early warning systems. This study implements an artificial intelligence-based method to predict the level of earthquake tremors early, when P-waves arrive at seismic stations. A CNN model is built to make predictions using a small window of the first 3 seconds of P-waves from accelerometer recordings. The model was built with a dataset with seismic wave input with 3,2 and 1 second variations of earthquake data in the West Java region from 2017 to 2023 with a division of 80% training data, 10% validation data and 10% test data. From the evaluation of the best model, the proposed scheme obtained an accuracy of 99.30%±0.63% with test data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-Pdf
UI - Tesis Membership Universitas Indonesia Library
Dennis Febri Dien
"Penyakit jantung menjadi permasalahan utama di dunia medis. Hal ini dikarenakan sulitnya mendeteksi gejala awal dari penyakit tersebut. Pendeteksian gejala ini dapat dilakukan dengan memonitori sinyal elektrokardiogram pasien untuk mendeteksi jenis aritmia yang diderita. Penelitian klasifikasi aritmia mengunakan pemrosesan komputer telah berhasil mengidentifikasi tipe aritimia satu dengan lainnya. Namun dalam permasalahan dunia nyata, pasien dapat menderita jenis aritmia yang merupakan gabungan dari jenis aritmia lainnya. Penelitian ini bertujuan untuk melakukan klasifikasi aritmia secara multi-label pada data elektrokardiogram. Data yang digunakan adalah data yang berasal dari The China Physiological Signal Challenge 2018. Eksperimen yang dilakukan terbagi menjadi dua proses, yaitu pemilihan dan pemelajaran data. Teknik yang digunakan untuk pemilihan data dengan memotong data berdasarkan letak QRS sinyal menggunakan Combined Adaptive Threshold. Kemudian hasil data segmentasi sinyal dipelajari menggunakan 1DCNN dan LSTM dengan Attention. Penelitian ini berhasil melakukan klasifikasi multi-label pada data aritmia dan memperoleh rata-rata F1-Score sebesar 81.7% berdasarkan hasil evaluasi terbaik menggunakan K-Cross Validation.
Heart Disease is the main problem in medical world. One of the reasons is because the disease is still hard to detect it earlier. The main method to detect the heart disease is monitoring electrocardiogram signal and try to identify arrhythmia of the patient. The latest research has succeeded to classify the arrhythmia using deep learning. But in the real-world problem, patient can be having a multiple arrhythmia at the same time. This research focus on to classify multiple arrhythmia with electrocardiogram data. The data that had been used for this research is from The China Physiological Signal Challenge 2018. The experiment had two step process, there are sampling step, and learning step. Technique that had been used for sampling is based on slicing the data using QRS detection based on Combined Adaptive Threshold. Then the result of the segmentation is used for training data in 1DCNN and LSTM with attention This research has succeeded to get average of F1- Score 81.7% based on the best evaluation result using K-Cross Validation."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library