Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Ota Rahmawati
"Pada aplikasi implantasi ortopedi, bifasik kalsium fosfat (BCP) merupakan material ideal sebagai pengganti tulang, karena material ini terdiri dari hidroksiapatit (HA) yang bersifat bioaktif dan beta-Trikalsium fosfat (β-TCP) yang mudah diserap (resorbable). Campuran kedua senyawa ini dapat meningkatkan sifat osteokonduktifitas hidroksiapatit (HA), sehingga implantasi untuk terapi kerusakan tulang dapat menjadi lebih efektif. Namun Bifasik Kalsium Fosfat (BCP) masih bersifat rapuh, sehingga BCP perlu dikombinasikan dengan Natrium alginat (Na-alginat) membentuk komposit yang lebih lentur dan kuat serta berfungsi juga sebagai porogen, sehingga didapatkan BCP berpori. Penelitian diawali dengan sintesis bisfasik kalsium fosfat (BCP) menggunakan iradiasi gelombang mikro dengan daya 800 watt selama 45 menit. Sampel BCP yang dihasilkan di uji dengan XRD (X-ray Diffractometer) menunjukkan terbentuknya fasa HA 74% dan β-TCP 26%, dengan ukuran kristal BCP 69.739 nm dan indeks kristalinitasnya sebesar 10.108. Kemudian bifasik kalsium fosfat (BCP) dicampur dengan Na-alginat menggunakan CaCl2 0,03 M sebagai agen taut silang (crosslinker agent) untuk mendapatkan Scaffold komposit yang berpori. Penelitian ini dilakukan untuk menentukan pengaruh variasi komposisi komposit BCP/Na-Alginat terhadap porositas yang terbentuk. Sintesis komposit BCP/Na-alginat dilakukan dengan metode eksitu, yaitu mencampurkan BCP yang telah disintesis dengan Na-alginat pada komposisi BCP/Na-Alginat sebesar 80/20, 70/30, 60/40 (wt%) kemudian dikeringkan menggunakan metode freeze drying. Hasil uji XRD terhadap komposit yang terbentuk mempunyai nilai indeks kristalinitas dan ukuran kristal terendah masing-masing 0.381 dan 23.370 nm, yang dimiliki oleh komposit BCP/Na-alginat 60/40 wt%. Hasil uji FTIR pada komposit BCP/Na-alginat menunjukkan keberadaan hidroksiapatit (HA) dan β-TCP (gugus fungsi OH- dan PO43-) dan Na-alginat (gugus fungsi COO-). Dari hasil uji SEM menunjukkan porositas yang terbentuk meningkat seiring bertambahnya Na-alginat yaitu sebesar 43.927%, 51.416%, dan 64.322%.

In orthopedic implantation applications, biphasic calcium phosphate (BCP) is an ideal material as a bone substitute, because this material consists of bioactive hydroxyapatite (HA) and absorbable beta-tricalcium phosphate (β-TCP). The mixture of these two compounds can increase the osteoconductivity of hydroxyapatite (HA), so that implantation for bone damage therapy can be more effective. However, Biphasic Calcium Phosphate (BCP) is still brittle, so BCP needs to be combined with Sodium Alginate (SA) to form a composite that is more flexible and strong and also functions as a porogen, so that BCP is porous. The study began with the synthesis of bisphasic calcium phosphate (BCP) using microwave irradiation with a power of 800 watts for 45 minutes. The resulting BCP samples were tested using XRD (X-ray Diffractometer) showing the formation of 74% HA and 26% β-TCP phases, with BCP crystal size of 69.739 nm and crystallinity index of 10.108. Then biphasic calcium phosphate (BCP) was mixed with sodium alginate using 0.03 M CaCl2 as a crosslinker agent to obtain a porous composite scaffold. This research was conducted to determine the effect of variations in the composition of the BCP/sodium alginate composite on the porosity formed. The synthesis of BCP/sodium alginate composites was carried out using the ex situ method, namely mixing the synthesized BCP with sodium alginate at the composition of 80/20, 70/30, 60/40 (wt%) BCP/sodium alginate and then dried using the freeze drying method. The XRD test results on the composites formed had the lowest crystallinity index and crystal size values of 0.381 and 23.370 nm, respectively, which were owned by the BCP/sodium alginate composite of 60/40 wt%. The results of the FTIR test on the BCP/sodium alginate composite showed the presence of hydroxyapatite (HA) and β-TCP (OH- and PO43- functional groups) and sodium alginate (COO- functional groups). The results of the SEM test showed that the porosity formed increased with the addition of sodium alginate, namely 43.927%, 51.416%, and 64.322%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Malida Aprilliza
"Penelitian ini bertujuan untuk membuat pupuk slow-release nanokomposit superabsorben. Sintesis pupuk slow-release nanokomposit superabsorben dilakukan dalam 4 tahap. Tahap pertama, isolasi natrium alginat dari ganggang coklat diperoleh rendemen natrium alginat sebesar 44,32% dengan berat molekul 10163,819 g/mol. Keberhasilan isolasi didukung dengan karakterisasi menggunakan FTIR, XRD, SEM dan DSC. Tahap kedua, sintesis superabsorben nanokomposit menggunakan natrium alginat sebagai backbone, asam akrilat dan akrilamida sebagai monomer, kalium persulfat sebagai inisiator dan N,N-metilena bisakrilamida (MBA) sebagai pengikat silang serta zat anorganik bentonit sebagai filler. Kapasitas swelling superabsorben nanokomposit terbaik sebesar 576 g/g dan kapasitas swelling dan release terhadap larutan urea sebesar 629 g/g, dan 15 %. Hasil ini didukung dengan karakterisasi menggunakan FTIR, SEM dan DSC. Komposisi terbaik ini digunakan untuk sintesis pupuk slow release dengan metode polimerisasi insitu diperoleh kapasitas swelling air sebesar 638 g/g dan kapasitas release sebesar 72,76 %. Pupuk slow release dikarakterisaasi dengan FTIR dan SEM.

Superabsorbent nanocomposite fertilizer was synthezised in four steps. Initially, isolation alginate sodium from brown algae by extraction method. Sodium alginate obtained from extraction of brown algae used as the backbone for the synthesis of superabsorbent nanocomposite copolymerization.. The rendement of sodium alginate obtained was 44.32% with molecular weight of 10163,819 g/mol from measurement the intrinsic viscosity. The product isolation was characterized by FTIR, XRD, SEM, and DSC. The next step was synthesis of nanocomposite superabsorbent by acrylic acid and acrylamide as monomer, sodium alginate as backbone, potassium persulfate as inisiator, MBA as crosslinker and bentonite as filler by radical polimeryzation method. Optimazation of composition nanocomposite superabsorbent was done by swelling capacity. The results of swelling capacity in water gave 576 g/g for SA3 while swelling and release in urea solutions gave respectively 629 g/g and 15%. SA3 was characterized by FTIR, SEM, and DSC. The composition in synthesis of SA3 was used to synthesized slow release fertilizer and characterized by FTIR and SEM. Swelling and release capacity of fertilizer was 638 g/g and 72,76 % respectively
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T46565
UI - Tesis Membership  Universitas Indonesia Library
cover
Prasetia
"Semikonduktor TiO2 mulai dikembangkan menjadi beberapa bentuk morfologi skala nano, salah satu bentuk morfologinya yaitu bentuk TiO2 nanotube. Metode yang paling mudah dilakukan dalam sintesis TiO2 nanotube adalah dengan cara anodisasi menggunakan larutan elektrolit tertentu. Untuk menyempurnakan sintesis TiO2 nanotube, digunakan larutan elektrolit berviskositas tinggi agar mampu menahan laju disolusi dalam sintesis TiO2 nanotube. Natrium alginat merupakan salah satu zat pengental yang diekstrak dari ganggang coklat dan diharapkan mampu menahan laju difusi elektrolit pada sintesis TiO2 nanotube sehingga mampu menghasilkan TiO2 nanotube yang sangat teratur dengan ketinggian tabung yang cukup. Pada penelitian ini, mula-mula dilakukan penentuan viskositas natrium alginat dengan berbagai konsentrasi menggunakan viskometer ostwald. Kemudian, dilakukan anodisasi pada plat titanium dengan variasi konsentrasi natrium alginat, variasi konsentrasi NH4F, serta variasi pH elektrolit. Hasil karakterisasi SEM menunjukkan bahwa penambahan konsentrasi natrium alginat dan NH4F dalam larutan elektrolit dapat meningkatkan tinggi, diameter, serta kerapihan dari nanotube yang terbentuk. Namun penambahan konsentrasi NH4F yang lebih tinggi serta kondisi pH elektrolit yang lebih rendah justru membuat morfologi TiO2 nanotube semakin tidak beraturan atau bahkan tidak terbentuk. Berdasarkan hasil penelitian, diperoleh morfologi TiO2 nanotube terbaik dengan menggunakan konsentrasi elektrolit natrium alginat dan NH4F masing-masing sebesar 0,30 % dengan media elektrolit pada pH 4.

TiO2 semiconductor has been developed in some nanoscale forms, one of those is TiO2 nanotube. The simplest way to synthesize TiO2 nanotube is anodization process using certain electrolyte solution. High-viscosity electrolyte solution can be used to control the dissolution rate in TiO2 nanotube synthesis. Sodium alginate is one of the thickening agent extracted from brown algae and hopefully it can control the dissolution rate in electrolyte solution in TiO2 nanotube synthesis, so the Highly-ordered TiO2 nanotube can be formed with sufficient nanotube length. In this research, first the determination of sodium alginate viscosity with viscometer Ostwald must be conducted. Then, titanium foil is anodized with concentration variation of NH4F and sodium alginate, also with the pH variation of electrolyte solution. Based on characterization using SEM, the addition of NH4F and sodium alginate in electrolyte solution can increase the length, diameter and organization of nanotube which formed. But the addition of higher NH4F concentration and electrolyte acidity causes TiO2 nanotube morphology more collapsed and not organized, moreover it cant be formed. Based in this research, TiO2 nanotube with the best morphology is obtained with using NH4F and sodium alginate concentration in 0,30 % each, in an electrolyte solution with pH 4."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marbun, Miranda Yustika Elmaria
"Hidrogel disintesis dari biopolimer natrium alginat (SA) dan asam akrilat poli (PAA) menggunakan metode okulasi, kalium peroksidisulfat (KPS) sebagai inisiator dan N, N-metilen-bis-akrilamida (MBA) sebagai tanda silang. agen-link. Matriks jaringan hidrogel digunakan sebagai nanoreaktor untuk pembentukan nanopartikel perak (AgNP) menggunakan metode post-loading sehingga dapat diterapkan pada kain katun yang memiliki aktivitas antibakteri. Karakterisasi hidrogel dan kain katun menggunakan instrumentasi FTIR, SEM, TEM, dan XRD DSN AAS. Bahan tanpa modifikasi HB 5 memiliki kapasitas situs maksimum 59,06 g/g dan Ag pemuatan ion + 663 ppm/g. Variasi prekursor AgNO3 dalam bahan hidrogel HB 5 diketahui bahwa HBT 5 dengan konsentrasi AgNO3 500 ppm (kode HBT 5/500) memiliki hasil yang baik untuk aktivitas antibakteri. Aktivitas antibakteri dilakukan secara in vitro terhadap bakteri uji Staphylococcus Aureus dan Escherichia Coli. Hasil untuk HBT 5/500 adalah kapasitas situs maksimum 80,66 g/g, pemuatan ion Ag + 203,15 ppm/g dan kapasitas rilis maksimumnya 0,34 ppm/g. HB 5 memiliki kinetika yang mengikuti urutan semu dua dengan parameter laju situs adalah 142,8 menit. Sementara itu, HBT 5 memiliki kinetika yang mengikuti urutan semu satu dengan parameter tingkat situs 294,1 menit. Bahan hidrogel terbaik diterapkan pada kain katun menggunakan proses pelapisan, aktivitas anti-bakteri diuji terhadap E. coli dan S. aureus. Berdasarkan uji aktivitas antibakteri, dapat dicatat bahwa ketika kain berlapis kapas dari AgNP yang dimodifikasi hidrogel memiliki aktivitas antibakteri yang sangat baik terhadap bakteri E. coli dan S. aureus, dibuktikan dengan hasil persentase pengurangan (% R) = 100%, di mana tidak ada pertumbuhan bakteri yang terjadi.

Hydrogels are synthesized from the sodium alginate (SA) and poly acrylic acid (PAA) biopolymers using the grafting, potassium peroxidisulfate (KPS) method as the initiator and N, N-methylene-bis-acrylamide (MBA) as a cross mark. agent-link. Hydrogel tissue matrix is ​​used as a nanoreactor for the formation of silver nanoparticles (AgNP) using the post-loading method so that it can be applied to cotton fabrics that have antibacterial activity. Characterization of hydrogels and cotton cloth using FTIR, SEM, TEM, and XRD AAS instrumentation. Material without HB 5 modification has a maximum site capacity of 59.06 g/g and Ag loading of + 663 ppm/g. Variation of AgNO3 precursors in HB 5 hydrogel material is known that HBT 5 with 500 ppm AgNO3 concentration (HBT code 5/500) has good results for antibacterial activity. Antibacterial activity was carried out in vitro against Staphylococcus Aureus and Escherichia Coli test bacteria. The results for HBT 5/500 are a maximum site capacity of 80.66 g/g, Ag + 203.15 ppm/g ion loading and a maximum release capacity of 0.34 ppm/g. HB 5 has kinetics that follow a pseudo-second order with a site rate parameter of 142.8 minutes. Meanwhile, HBT 5 has kinetics that follow a pseudo-one sequence with site level parameters of 294.1 minutes. The best hydrogel material is applied to cotton fabrics using a coating process, the anti-bacterial activity is tested against E. coli and S. aureus. Based on the antibacterial activity test, it can be noted that when the cotton-coated cloth of the modified Hydrogel AgNP has very good antibacterial activity against E. coli and S. aureus bacteria, evidenced by the results of a percentage reduction (% R) = 100%, where there is no bacterial growth that occurs."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rhadiathul Wahyuli
"Nanokomposit berbasis biopolimer yang mengalami adsorpsi ion logam pada permukaan bahan pendukung magnetik memiliki kemampuan katalitik lebih baik sehingga menarik untuk dikembangkan sebagai katalis dalam reaksi reduksi 4-nitrofenol. Nanokomposit NaAlg-CMC/Fe3O4 dan NaAlg-CMC/Fe3O4-Cu telah berhasil disintesis yang didukung dengan karakterisasi menggunakan FTIR, XRD dan SEM-EDS Mapping. NaAlg-CMC merupakan biopolimer yang bertindak sebagai support katalis dan dapat membentuk komposit dengan sifat yang baik saat digabungkan dengan Fe3O4. Nanokomposit NaAlg-CMC/Fe3O4 dapat digunakan sebagai adsorben yang baik dalam penghilangan ion Cu2+. Kondisi optimum diperoleh pada berat nanokomposit 50 mg, pH 5,5, rasio NaAlg-CMC/Fe3O4 2:1, waktu kontak 90 menit dengan persen penghilang 97,80% dan kapasitas adsorpsi 48,9018 mg/g. Isoterm adsorpsi ion Cu2+ mengikuti model isoterm adsorpsi Langmuir dengan R2 sebesar 0,9944. Nanokomposit NaAlg-CMC/Fe3O4-Cu dapat menjadi katalis yang baik dalam reduksi katalitik 4-nitrofenol dengan persen reduksi sebesar 92,95 pada berat katalis 45 mg dan waktu reaksi 11 menit. Studi kinetika reaksi reduksi 4-nitrofenol menjadi 4-aminofenol mengikuti kinetika reaksi orde pertama dengan persamaan v = 0,2592 menit-1 [4-NP]. Nanokomposit yang diperoleh dapat menjadi solusi untuk mengurangi logam berat dan polutan organik yang ramah lingkungan.

Biopolymer-based nanocomposite with adsorbed metal ions on the surface of magnetic support has better catalytic ability that is interest to be developed as a catalyst in the reduction of 4-nitrofenol. SA-CMC/Fe3O4 and SA-CMC/Fe3O4-Cu have been successfully synthesized and supported by characterization using FTIR, XRD and SEM-EDS Mapping. SA-CMC is a biopolymer-based composite as a supporting catalyst and able to form composites with good properties when combined with Fe3O4. SA-CMC/Fe3O4 nanocomposites can be used as good adsorbents of Cu2+ in wastewater. The optimum conditions were obtained by the adsorbent dosage 50 mg, pH 5.5, ratio of SA-CMC/Fe3O4 2:1, contact time 90 minutes with efficiency removal 97.80% and maximum adsorption capacity reached 48,9018 mg/g. The adsorption process of Cu2+ removal follows the Langmuir adsorption isotherm model. SA-CMC/Fe3O4-Cu nanocomposite can be a good catalyst in the reduction of 4-nitrophenol with percent of reduction 92.95% by amount of catalyst 45 mg and reaction time 11 minutes. Study kinetics of reduction 4-nitrophenol to 4-aminophenol follows pseudo-first-order reactions with equation v = 0,2592 min-1 [4-NP]. Nanocomposite can remove heavy metal and organic pollutant in wastewater that are environmentally friendly.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover