Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Rieska Juliana Ariaty
"ABSTRAK
Pada penelitian ini dilakukan kajian risiko radionuklida 210Po terhadap konsumsi biota kerang hijau (Perna viridis), udang jerbung (Fenneropenaeus merguiensis), cumi-cumi (Loligo sp.), dan ikan tenggiri (Scomberomorus commersonii) yang berasal dari Perairan Teluk Jakarta. Aktivitas radionuklida 210Po pada sampel diukur menggunakan spektrometer α. Analisis radionuklida 210Po dilakukan pada bagian daging, kepala, dan pencernaan untuk memperoleh pola distribusi 210Po dalam tubuh biota. Distribusi radionuklida 210Po tertinggi pada bagian pencernaan diikuti oleh bagian kepala dan daging. Aktivitas radionuklida 210Po dalam tubuh biota dilakukan sebelum dan setelah food processing (proses penggorengan). Aktivitas radionuklida 210Po setelah food processing (proses penggorengan) mengalami penurunan sebesar 41-57%. Asupan harian radioaktivitas (daily intake) tertinggi yaitu pada cumi-cumi goreng sebesar 0,22 Bq dan diikuti oleh ikan tenggiri goreng, kerang hijau goreng, udang jerbung goreng dengan nilai dosis berturut-turut sebesar 0,01 Bq; 0,27 x 10-2 Bq ; dan 0,08 x 10-2 Bq. Dosis asupan tahunan (Deff) tertingi yaitu dosis cumi-cumi goreng sebesar 952,62 x 10-7 sv dan diikuti oleh dosis ikan tenggiri goreng, kerang hijau goreng, udang jerbung goreng dengan nilai dosis berturut-turut sebesar 69,24 x 10-7 sv; 11,80 x 10-7 sv; dan 3,43 x 10-7 sv. Nilai LCR (Lifetime Cancer Risk) tertinggi pada cumi-cumi goreng sebesar 521,25 x 10-7 dan diikuti oleh ikan tenggiri goreng, kerang hijau goreng, udang jerbung goreng dengan nilai dosis berturut-turut sebesar 37,75 x 10-7; 6,46 x 10-7; dan 1,88 x 10-7. Berdasarkan nilai dosis asupan harian (daily intake), dosis asupan tahunan (Deff) , dan LCR (Lifetime Cancer Risk) biota uji masih tergolong aman untuk dikonsumsi dan tidak berisiko karsinogenik.

ABSTRACT
In this study, the risk of radionuclide 210Po was assessed on consumption of green mussel (Perna viridis), jerbung shrimp (Fenneropenaeus merguiensis), squid (Loligo sp.), and mackerel fish (Scomberomorus commersonii) which originated from Jakarta Bay. Radionuclide 210Po activity in the samples were analyzed using α spectrometer. The activities of 210Po were observed in muscle, head, and digestive system to obtained distributional pattern of radionuclide 210Po in the biotas organs. The highest distribution of radionuclide 210Po was detected in digestive system and followed by head and muscle. The 210Po activities were analyzed before and after food processing. The radionuclide 210Po activities after food processing decreased by 41-57%. The highest daily intakeof 210Po found in fried squid which contains 0,22 Bq, followed by fried mackerel fish, green mussel, and jerbung shrimp with 0,01 Bq; 0,27 x 10-2 Bq ; dan 0,08 x 10-2 Bq, respectively. The highest annual intake (Deff) of 210Po is 952,62 x 10-7 sv, which found in fried squid and followed by fried mackerel fish, green mussel, and jerbung shrimp with 69,24 x 10-7 sv; 11,80 x 10-7 sv; dan 3,43 x 10-7 sv, respectively. The highest LCR (Lifetime Cancer Risk) of 210Po being 521,25 x 10-7, found in cooked squid and followed by fried mackerel fish, green mussel, and jerbung shrimp which respectively has 37,75 x 10-7; 6,46 x 10-7; dan 1,88 x 10-7. According to the results of daily intake, annual intake (Deff) , and LCR (Lifetime Cancer Risk), the biota tested are still classified as safe for consumption and not carsinogenic."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Assyifa Rahman Hakim
"Terapi radionuklida merupakan salah satu metode klinis untuk mengatasi tumor ataupun kanker. Salah satu bagian penting dari perhitungan dosimetri pada terapi radionuklida adalah penentuan Time-Integrated Activity Coefficient (TIAC). Kompleksitas perhitungan TIAC membutuhkan adanya perangkat lunak untuk membantu perhitungannya. Perangkat lunak yang sudah ada tidak dapat diperoleh dengan mudah, hanya berfokus kepada pengolahan citra, serta menerapkan perhitungan TIAC dengan tidak memperhitungkan ketidakpastian saat melakukan fitting dan tidak menerapkan model selection. Penelitian ini bertujuan untuk mengembangkan perangkat lunak open source OpenDose dalam hal penentuan TIAC dengan melakukan fitting yang mempertimbangkan ketidakpastiannya serta menerapkan metode model selection. Hasil fitting dari perangkat lunak yang dibangun ini dibandingkan dengan perangkat lunak SAAM II untuk validasi. Metode model selection dilakukan dengan membandingkan goodness of fit tiap fitting yang dihasilkan, model terbaik dipilih untuk dihitung luas di bawah kurva (AUC) yang nantinya digunakan untuk perhitungan TIAC. Hasil penelitian ini menunjukkan bahwa perangkat lunak yang dibangun menghasilkan nilai deviasi relatif dari parameter dan standar deviasinya di bawah 10% jika dibandingkan dengan SAAM II serta berhasil mengaplikasikan model selection dengan baik sehingga perangkat lunak yang dibangun dapat diimplementasikan pada OpenDose.

Radionuclide therapy is one of the clinical methods to treat both tumor and cancer. One of the important parts for its dosimetry calculation is Time-Integrated Activity Coefficient (TIAC) calculations. The complexity of TIAC calculations makes it important to have software to help its calculations. Existing software is unaffordable, focuses only on image processing, and calculating TIAC without considering uncertainty and without applying model selection. This research intended to develop open-source software OpenDose in terms of TIAC calculation which considers uncertainty and applying model selection. The fitting results from the developed software are compared to the results from SAAM II software. Model selection is done by comparing its goodness of fit criteria of each fitting result, the best model is proceeded to Area Under the Curve (AUC) calculation which is used to determine TIAC. This research shows that the developed software is under 10% in relative deviation for every parameter and its standard deviation compared to SAAM II. This software also performs model selection successfully which concludes that this software is ready to be implemented to OpenDose software."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizqi Tajuddin
"Air merupakan kebutuhan yang sangat vital bagi kehidupan manusia, oleh
karena itu periu dilakukan kajian kelayakan air untuk konsumsi manusia. Sumber
air untuk memenuhi kebutuhan manusia antara lain berasal dari air permukaan
dan mata air. Sebelum air tersebut diambil, air berada dalam aquifer yang berupa
batuan yang mengandung radionuklida alam, saiah satunya adalah radionuklida
deret Uranium. Salah satu radionuklida yang menjadi perhatian adalah keberadaan
^^®Ra dan anak luruhnya daiam air, karena bersifat racun dan memancarkan radiasi
alfa dan beta yang berbahaya bila masuk kedalam tubuh manusia, sehingga
perlu dilakukan analisis ^^®Ra dan anak luruhnya (^^^Rn dan ^'°Po).
Sampel air yang dianalisis berasal dari mata air gunung kapur Ciseeng, sedangkan
sampel kedua berasal dari air tan ah di Pusdiklat-Batan.
"^^Rn adalah salah satu anak luruh ^^®Ra yang dianalisis dengan cara
mengekstraksi ^^^Rn dalam sampel air dengan menggunakan pelarut toluena.
Fraksi toluena diambil dan dicampur dengan sintilator (PPO dan POPOP), kemudian
dicacah dengan menggunakan Pencacah Sintilasi Ca ir (LSC) setelah terjadi
keseimbangan antara ^^^Rn dan keempat anak luruhnya, yaitu 4 jam atau lebih
setelah ekstraksi. Adanya menunjukkan adanya pada aquifer airnya dan kemungkinan
adanya ^^®Ra dalam sampel air tersebut, oieh karena itu kandungan
^^®Ra dapat dianaiisis dengan cara menganalisis ^^Rn yang tumbuh dalam waktu
tertentu karena peluruhan ^®Ra. Oieh karena itu kandungan ^^^Rn yang ada pada
sampel harus di lepas dahulu dengan cara pengadukan selama 2 jam. Selanjutnya
analisis ^^^Rn-nya dilakukan dengan cara preparasi dan pencacahan dengan
metode yang sama untuk analisis Rn. Nilai kandungan Rn yang diperoleh
dan waktu penumbuhannya digunakan untuk menghitung kandungan ^^®Ra berdasarkan
persamaan peluruhan beruntun. Hasil yang didapat dibandingkan hasii
pengukuran dengan menggunakan spektrometer gamma (Pusdi-klat-BATAN).
Anak luruh lainnya yang dianaiisis adalah dengan menggunakan
spektrometer alfa. Preparasi dilakukan untuk mendapatkan sampel yang cukup
tipis dan murni, supaya tidak terjadi serapan diri oieh sampel, karena daya tembus
radiasi alfa sangat rendah. Preparasi dilakukan dengan cara deposisi kimia polo
nium pada plat nikel (sel galvani). Selanjutnya plat nikel tersebut dicacah dengan
menggunakan spektrometer alfa.
Hasii analisis kandungan ^^®Ra sebesar (14,9±1) Bq/L untuk sampel Ciseeng,
sedang-kan sampel Pusdiklat tidak terdeteksi. dimana nilai Batas Deteksi
Terendah sebesar 0,054 Bq/L. Hasil ini sesuai dengan pengukuran menggunakan
Spektrometer gamma sebesar (13±4) Bq/L untuk sampel air Ciseeng dan
(0,013±0,005) Bq/L untuk sampel air Pusdiklat dengan tingkat kepercayaan 95%.
Kandungan ^^^Rn untuk sampel air Ciseeng dan Pusdiklat sebesar (4,9+0,3) Bq/L
dan (1,91±0,12) Bq/L. Kandungan ^^°Po untuk sampel air Ciseeng dan Pusdiklat
masing-masing sebesar (38,0±2) mBq/L dan (0,31 ±0,08) mBq/L. Kandungankandungan
radionuklida tersebut masih dibawah ambang batas yang ditetapkan
oieh SK Ka.BAPETEN No.02/Ka-BAPETEN/V-99 yaitu sebesar 10® Bq/L untuk
226rRa dan 10"^ Bq/L untuk ®^°Po. Sedangkan nilai batas untuk 2®2®2®r Rn dalam air tidak
ada karena ®®®Rn dalam tidak berbahaya karena mudah lepas ke udara.
diperlukan sebagai indikator kemungkinan adanya ^®^Ra dan anak luruhnya dalam
air. Hasil yang didapat tersebut menunjukkan bahwa ^^®Ra dan anak luruhnya,
baik dalam sampel air Ciseeng maupun Pusdiklai, tidak berada daiam keseimbangan
peluruhannya (keselmbangan terjadi pada saat ^^®Ra dan anak luruhnya
memlliki aktivltas yang sama), karena adanya fenomena alam, seperti penguapan
^^^Rn darl air permukaan atau penumpukan ^^^Rn pada air tanah."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deyan Prashna
"Pada umumnya, dosis pasien kanker terapi radionuklida diberikan secara fixed dose, namun diperoleh eror yang besar. Untuk menjamin keakurasian, maka diperlukan perhitungan dosimetri internal. Penelitian bertujuan mengembangkan software in-house perhitungan dosimetri internal terapi radionuklida dengan menggabungkan software peneliti sebelumnya terkait kuantifikasi aktivitas organ citra planar kamera gamma dan perhitungan AUC. Software tersebut bernama Absorbed Dose Calculator of Lu-177 dalam bentuk tampilan GUI (graphical user interface) yang dikembangkan melalui software MATLAB versi 2020a. Terdapat 3 tahap perhitungan yaitu tahap kuantifikasi akivitas berdasarkan perhitungan aktivitas conjugate view, tahap perhitungan AUC dan dosis serap. Perhitungan dilakukan terhadap 7 pasien RrDTC pada organ ginjal kanan, ginjal kiri, hati dan limfa. Nilai tertinggi untuk aktivitas diperoleh pada organ hati sebesar 20,02 MBq, sedangkan untuk dosis serap pada organ limfa sebesar 554,46 mGy atau 0,55 Gy. Nilai dosis yang diperoleh tidak melebihi nilai batas dosis yang ditoleransikan. Hasil validasi menunjukan eror (relative deviation, %RD) kurang dari 10%. Software peneliti dapat melakukan perhitungan dosimetri internal dengan hasil yang baik.

In general, the dose of radionuclide therapy cancer patients is given in a fixed dose, but a large error is obtained. To ensure accuracy, it is necessary to calculate the internal dosimetry. This study aims to develop an in-house software for calculating the internal dosimetry of radionuclide therapy by combining the software of previous researchers related to the quantification of organ activity in gamma camera planar images and AUC calculations. The software is called Absorbed Dose Calculator of Lu-177 in the form of a GUI (graphical user interface) display which was developed through the MATLAB software version 2020a. There are 3 calculation stages, namely the activity quantification stage based on the conjugate view activity calculation, the AUC calculation stage and the absorbed dose. Calculations were performed on 7 RrDTC patients in the right kidney, left kidney, liver and spleen. The highest value for activity was obtained in the liver at 20,02 MBq, while the absorbed dose in the spleen was 554,46 mGy or 0,55 MBq. The dose value obtained does not exceed the tolerable dose limit value. The validation results show the error (relative deviation, %RD) is less than 10%. Research software can perform internal dosimetry calculations with good results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mettler, Fred A., Jr.
Philadelphia : Elsevier Mosby, 2012
616.075 75 MET e
Buku Teks SO  Universitas Indonesia Library
cover
"Scrotal pathology is a comprehensive practical guide to the management of patients who present with scrotal disorders. Introductory chapters consider imaging instrumentation, clinical evaluation, and clinical and imaging anatomy. The full range of disorders is then discussed in individual chapters organized according to clinical presentation. All clinical and imaging aspects are covered in depth, with full description of symptoms and explanation of the value of different clinical tests and imaging modalities. In addition, underlying histopathological features are presented and correlated with imaging features in order to clarify their pathological basis. For each disorder, therapeutic strategies are discussed and appraised. Adults and children are considered separately whenever necessary, bearing in mind that they often present essentially different scrotal pathology. The many images are all of high quality and were obtained using high-end equipment."
Berlin : Springer, 2012
e20426010
eBooks  Universitas Indonesia Library
cover
Ade Riana
"Individual Treatment Planning (ITP) direkomendasikan dalam peptide receptor radionuclide therapy (PRRT). Namun, metode Fixed Dose Treatment Planning (FDP) telah sering dipilih daripada ITP di klinik karena kompleksitas dan beban kerja yang tinggi dari pengukuran biokinetik yang dibutuhkan dalam ITP. Oleh karena itu, dalam penelitian ini dilakukan studi Population and Covariate Model (POPCOV) untuk menyederhanakan proses ITP dengan menggunakan parameter yang mudah diukur, daripada menggunakan data biokinetik untuk melakukan ITP di PRRT dengan minimal Physiologically Based Pharmacokinetic (mPBPK) Model. Semua sistem biologis yang bersifat penting dalam PRRT seperti ginjal dan darah dikembangkan dalam model mPBPK. Data biokinetik dari 9 pasien dengan meningioma atau tumor neuroendokrin setelah injeksi pra-terapi yaitu 111In-DOTATATE digunakan untuk pengembangan model. Metode POPCOV digunakan untuk memprediksi parameter yang tidak diketahui dari model mPBPK menggunakan masing-masing kovariat. Adapun unknown/fitted parameter yang diestimasi yaitu reseptor densitas di ginjal (Rk) reseptor densitas di organ rest (RRest) laju degradasi (λrelease) dan laju pengikatan peptida ke albumin dalam darah (konAlb). Selain itu, tujuh parameter kovariat dari pasien yang digunakan untuk analisis, yaitu berat badan, usia, luas permukaan tubuh (BSA), laju filtrasi glomerulus (GFR), volume ginjal, volume limpa, dan volume hati. Metode seleksi bertahap (forward dan backward) digunakan untuk pemilihan kovariat dan penentuan final model POPCOV. Dalam tahap evaluasi dan validasi final model POPCOV diuji dengan membandingkan time integrated activity coefficient (TIACs) ​​dari FDP dan metode ITP konvensional. Berdasarkan analisis metode POPCOV, GFR diidentifikasi sebagai kovariat terbaik untuk Rk untuk variasi data biokinetik yang berbeda dan RRest untuk 9 data biokinetik. Adapun final model kovariat untuk Rk dengan 11 data biokinetik adalah [Rk] (10-15mol/l) = 6.32x106*(GFR/0.09)(0.67), Rk dengan 10 data biokinetik adalah [Rk] (10-15mol/l) = 6.28x106*(GFR/0.10)(0.80), Rk dengan 9 data biokinetik adalah [Rk] (10-15mol/l) = 6.37x106*(GFR/0.11)(1.18), dan RRest dengan 9 data biokinetik adalah [RRest] (10-15mol/l) = 0.17x106*(GFR/0.11)(1.01). Hasil ini menunjukkan bahwa kinerja POPCOV sekitar 20% lebih baik daripada FDP untuk ginjal. Hasil penelitian menunjukkan bahwa metode POPCOV dapat digunakan sebagai metode alternatif dalam PRRT untuk memprediksi TIAC ginjal jika data biokinetik individu tidak tersedia.

ABSTRACT
Individual Treatment Planning (ITP) is recommended in Peptide-Receptor Radionuclide Therapy (PRRT). However, Fixed Dose Treatment Planning (FDP) method has been frequently chosen over the ITP in the clinic due to the complexities and high workload of the biokinetic measurements. In this study, a Population and Covariate Model (POPCOV) was implemented to simplify the ITP process by using easy measured parameters, instead of using the biokinetic data, to perform ITP in PRRT with minimal Physiologically based Pharmacokinetic (mPBPK) model. All important biological systems in PRRT, e.g. kidneys and blood, were modeled using the developed mPBPK model. The biokinetic data of 9 patients with meningioma or neuroendocrine tumors after pre-therapeutic injection of 111In-DOTATATE was used for the model development. POPCOV method was used to predict the unknown parameters of the PBPK model using the individual covariates. The unknown parameters were the receptor density in the kidney (Rk), receptor density in the rest organ (RRest), degradation rate (λrelease) and binding rate of peptide to the albumin in blood (konAlb). Seven individual covariates of the investigated patients were used for the analysis, i.e. body weight, age, body surface area (BSA), glomerular filtration rate (GFR), kidneys volume, spleen volume, and liver volume. Stepwise selection procedures (forward selection and backward elimination) were used for the covariate selection and the derivation of the final model. The performance of the final model was tested by comparing the predicted time integrated activity coefficient (TIACs) from the FDP and conventional ITP method. Based on POPCOV analysis, GFR was identified as the best covariate for Rk with variations of different biokinetic data and RRest for 9 biokinetic data. The final covariate model of Rk with 11 biokinetic data was: [Rk] (10-15mol/l) = 6.32x106*(GFR/0.09)(0.67), Rk with 10 biokinetic data was: [Rk] (10-15mol/l) = 6.28x106*(GFR/0.10)(0.80), Rk with 9 biokinetic data was: [Rk] (10-15mol/l) = 6.37x106*(GFR/0.11)(1.18), and RRest with 9 biokinetic data was: [RRest] (10-15mol/l) = 0.17x106*(GFR/0.11)(1.01). These results indicated that the performance of POPCOV was around 20% better than the FDP for the kidneys. The results showed that the POPCOV method can be used as an alternative method in PRRT to predict kidneys TIACs in case where the individual biokinetic data is unavailable.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"The horizons of sophisticated imaging have expanded with the use of combined positron emission tomography (PET) and computed tomography (CT). PET-CT has revolutionized medical imaging by adding anatomic localization to functional imaging, thus providing physicians with information that is vital for the accurate diagnosis and treatment of pathologies. Since the integration of PET and CT several years ago, PET/CT procedures are now routine at leading medical centers throughout the world. This has increased the importance of nuclear medicine physicians acquiring a broad knowledge in sectional anatomy for image interpretation. The Atlas of Sectional Radiological Anatomy for PET/CT is a user-friendly guide presenting high-resolution, full-color images of anatomical detail and focuses solely on normal FDG distribution throughout the head & neck, thorax, abdomen, and pelvis, the primary sites for cancer detection and treatment through PET/CT.
"
New York: Springer, 2012
e20425864
eBooks  Universitas Indonesia Library
cover
"Written by internationally eminent experts in cardiovascular imaging, this volume provides state-of-the-art information on the use of MRI and CT in the assessment of cardiac and vascular diseases. This third edition, now in four-color, reflects recent significant advances in cardiovascular MRI technology and the continuing emergence of multi-detector CT as an important diagnostic modality, particularly for ischemic heart disease. Seven new chapters have been added including chapters on anatomy, cardiovascular MR in infants/​children, assessing myocardial viability, risk assessment in ischemic heart disease and MR guidance."
Philadelphia: Lippincott Williams & Wilkins, 2013
616.107 MRI
Buku Teks SO  Universitas Indonesia Library
cover
Bott, Simon
"Images in urology is a unique book that integrates images of urological conditions within their clinical context. Improvements in imaging techniques have meant greater diagnostic power and a dramatic rise in the number and quality of images obtained and viewed by practicing clinicians. None more so than in the field of urology, where static and dynamic images are fundamental to the diagnosis and treatment of almost all conditions. This book presents images of radiological and radionucleotide scans, macroscopic and microscopic histopathology specimens, urodynamic traces and photographs of dermatological conditions relating to urology. Each section has a series of questions, often relating to a clinical scenario, about the images. A comprehensive answer provides a description of each image and of the condition shown. Details of how to interpret the image and the use of contrast or staining methods to help differentiate normal anatomy from pathology are included. Images in Urology is an essential tool for urology, radiology and histopathology trainees and consultants, as well as being an excellent exam preparation guide.
"
London : Springer, 2012
e20426162
eBooks  Universitas Indonesia Library