Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Ira Sulistyowati
"Dalam rangka mendukung pengambilan keputusan yang tepat bagi pimpinan berbasis data (data driven organization), Kemenkeu menyusun inisiatif strategis optimalisasi Sistem Layanan Data Kementerian Keuangan (SLDK) dan pengembangan proyek data analytics. Dalam pengembangan data analytics, terdapat permasalahan rendahnya kualitas data sehingga data driven organization belum terwujud dengan optimal. Penelitian ini meggunakan metode kualitatif dengan melalui proses wawancara dan observasi. Pengukuran kualitas data dan tingkat kematangan kualitas data menggunakan kerangka kerja Loshin’s Data Quality, DAMA-Data Management Book of Knowledge (DMBoK), dan Government Data Qualiaty (GDQ). Hasil pengukuran kualitas data menunjukkan terdapat permasalahan data tidak akurat dan tidak lengkap dan tingkat kematangan kualitas data Kemenkeu berada pada level Repeatable. Menyusun strategi kualitas data, ketentuan teknis, tim kualitas data, dan prosedur pengelolaan kualitas data; identifikasi harapan dan aturan kualitas data; mengukur, memantau, dan melaporkan kualitas data; mengelola aturan, knowledge base, dan metadata; meningkatkan kesadaran; melakukan pelatihan; menyediakan tools, menerapkan aturan dan menangani permasalahan; memutakhirkan SLA; mengelola kinerja kualitas data; dan melakukan audit kualitas data merupakan strategi peningkatan kualitas data yang dilaksanakan dalam empat tahap pada Tahun 2022-2023.

To support the right decision making for data-driven organizations, the Ministry of Finance (MoF) has developed a strategic initiative for optimizing the MoF's Data Service System (SLDK) and developing a data analytics project. In the development of data analysis, there is a problem of low data quality so that data-driven organizations have not been realized optimally. This study uses a qualitative method through interview and observation. Measurement of data quality and maturity level of data quality uses the Loshin's Data Quality framework, DAMA-Data Management Book of Knowledge (DMBoK), and Government Data Quality (GDQ). The results of the measurement of data quality indicate that there are problems with inaccurate and incomplete data and the MoF's data quality level is at the Repeatable level. Develop a data quality strategy, technical provisions, data quality team, and data quality management procedures; identification of data quality expectations and rules; measure, monitor, and report on data quality; manage rules, knowledge base, and metadata; raise awareness; conduct training; provide tools, apply rules and carry out problem solving; updating SLAs; manage data quality performance; and conducting data quality audits is a data quality improvement strategy implemented in four stages in 2022-2023.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Ikhsan Setyadi
"Sekretariat Direktorat Jenderal Pendidikan Dasar dan Menengah (Setditjen Dikdasmen) adalah unit kerja di bawah Kementerian Pendidikan dan Kebudayaan yang bertugas untuk mengumpulkan dan mengelola data pokok pendidikan (Dapodik). Dapodik mencakup data satuan pendidikan, peserta didik, pendidik dan tenaga kependidikan dan substansi pendidikan yang terus diperbaharui secara online. Dapodik menjadi salah satu sumber data untuk pengambilan keputusan. Keputusan yang tidak tepat salah satunya disebabkan oleh pengolahan data yang kurang baik.
Penelitian ini menggunakan metode kualitatif, proses pengumpulan data dengan melakukan wawancara dan observasi dokumen terkait data pokok pendidikan. Melakukan peningkatan kapasitas internal dengan merancang dokumen standar kualitas data pokok pendidikan; Meningkatkan aturan bisnis validasi pada aplikasi front-end dapodik untuk meminimalisir kesalahan dan ketidaksesuaian data; Merancang sistem informasi manajemen kualitas data sebagai alat untuk melakukan pemantauan kualitas data pokok pendidikan; Meningkatkan peran admin pengelola dan pengguna data pokok pendidikan dengan melibatkan direktorat teknis dan LPMP untuk melakukan pemantauan kualitas data melalui aplikasi yang dibuat;Membuat satuan petugas baik di tingkat pusat maupun daerah sebagai bentuk pelayanan terhadap data pokok pendidikan.

The Secretariat of Directorate General of Primary and Secondary Education (Setditjen Dikdasmen) is work under the Ministry of Education and Culture whose officiate to collect and manage basic education data (Dapodik). Dapodik includes data on education units (Schools), students, educators and education staff and educational substances that are constantly updated online. Dapodik becomes one of the data sources for decision making. One improper decision is caused by poor data processing.
This study uses qualitative methods, the process of collecting data by conducting interviews and observing documents related to the basic data of education. Data quality assessment uses profiling data with dimensions of data quality, completeness, accuracy, truth, timeliness, and uniqueness. Increase internal capacity by designing basic education data quality document standards; Improve business rules validation on front-end applications dapodik to minimize errors and data mismatches; Designing a data quality management information system as a tool to monitor the quality of the basic education data;Increasing the admin role of managers and users of basic data education by involving the technical directorate and LPMP to monitor data quality through applications made; Make staff units both at the central and regional levels as a form of service to the basic education data.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
"Reproductive health programs in Indonesia pass across sectoral boundaries and formal authorities that they turn out to be inter-sectorally and vertically complex. Accordingly, the provision of data for reproductive health program planning, monitoring, and evaluation is not easy. Among those topics covered in reproductive health definition, only family planning data generally available and in a comprehensive shape. The management information systems (MIS) of data on other reproductive health topic such as an reproductive tract infections (RTIs), sexually transmitted diseases (STDs) and maternal health need to be initiated or more activated. "
Journal of Population, 7 (2) 2001 : 59-76, 2001
JOPO-7-2-2001-59
Artikel Jurnal  Universitas Indonesia Library
cover
Mohammad Haekal
"Penelitian ini memprediksi kualitas air Sungai Ciliwung berdasarkan parameter pH hasil pemantauan Online Monitoring menggunakan dua model Deep Learning yaitu Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM). Parameter input adalah pH dengan tiga skenario kombinasi yaitu waktu ganjil (t, t-1, t-3, t-5), genap (t, t+2, t-4, t-6) dan waktu berurutan (t, t-1, t-2, t-3) dengan target pH pada t+1, t+2 dan t+3. Parameter model adalah Optimizer dengan Adaptive Moment (Adam) sebagai Optimizer, aktivasi menggunakan Rectified Linear Unit (ReLU) dengan jumlah Epoch 500, dan Loss menggunakan Mean Squared Error (MSE). Kriteria Evaluasi menggunakan Coefficient of Determination (R2 ), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), dan Mean Absolute Percentage Error (MAPE). Hasil pemodelan menunjukkan selisih terendah antara pH riil dengan pH prediksi adalah 0 dan tertinggi 0,79. Pada model CNN, dari 9 nilai R2 ada 7 yang mendekati nilai 1, artinya persamaan regresi sesuai antara nilai variabel dependen dengan variabel independen, dan 2 mendekati nilai 0 yang artinya persamaan regresi tidak sesuai antara nilai variabel dependen dengan variabel independen. Selanjutnya, dari 9 nilai MAPE terdapat 5 nilai yang menunjukkan model prediksi baik, sisanya berada dalam rentang model prediksi cukup. Pada model LSTM, ada 8 dari 9 R2 yang memiliki nilai mendekati 1 dan hanya 1 yang mendekati 0. Selanjutnya, 6 dari 9 MAPE berada dalam rentang model prediksi baik, sisanya berada dalam rentang model prediksi cukup. Dari hasil penelitian diketahui bahwa semakin jauh titik prediksi yang di tuju maka relasi antara pH riil dengan pH prediksi semakin lemah. Ini ditunjukan oleh nilai R2 semakin kecil pada t+3 untuk semua parameter input. Dari hasil di atas disimpul bahwa Model LSTM dan CNN dapat digunakan untuk memprediksi kualitas air sungai Ciliwung berdasarkan parameter pH karena mayoritas nilai R2 mendekati 1, MAPE sebagian besar berada dalam model prediksi kelompok baik. Di antara dua model yang digunakan, model LSTM lebih baik dari pada model CNN karena memiliki nilai R2 yang mendekati 1 dan MAPE pada model prediksi baik lebih banyak.

This research predicts the water quality of the Ciliwung River based on pH parameters from Online Monitoring using two Deep Learning models, namely Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The input parameter is pH with three combination scenarios, namely odd times (t, t-1, t-3, t-5), even (t, t+2, t-4, t-6) and sequential times (t, t -1, t-2, t-3) with pH targets at t+1, t+2 and t+3. The model parameters are Optimizer with Adaptive Moment (Adam) as Optimizer, activation uses Rectified Linear Unit (ReLU) with a number of Epochs of 500, and Loss uses Mean Squared Error (MSE). Evaluation criteria use Coefficient of Determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The modeling results show that the lowest difference between real pH and predicted pH is 0 and the highest is 0.79. In the CNN model, of the 9 R2 values there are 7 that are close to 1, meaning that the regression equation matches the value of the dependent variable and the independent variable, and 2 are close to 0, which means that the regression equation does not match the value of the dependent variable and the independent variable. Furthermore, of the 9 MAPE values, there are 5 values that indicate a good prediction model, the rest are in the range of a sufficient prediction model. In the LSTM model, there are 8 out of 9 R2 which have values close to 1 and only 1 which is close to 0. Furthermore, 6 out of 9 MAPEs are in the good prediction model range, the rest are in the fair prediction model range. From the research results, it is known that the further away the prediction point is, the weaker the relationship between real pH and predicted pH. This is shown by the R2 value getting smaller at t+3 for all input parameters. From the results above, it can be concluded that the LSTM and CNN models can be used to predict the water quality of the Ciliwung River based on the pH parameter because the majority of R2 values are close to 1, the MAPE is mostly in the good group prediction model. Between the two models used, the LSTM model is better than the CNN model because it has an R2 value that is close to 1 and the MAPE in the good prediction model is higher."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adhy Prasetyo Widodo
"Kualitas udara yang buruk dalam ruang dapat menimbulkan gangguan kesehatan. Pemantauan kualitas udara dalam ruang saat ini dilakukan oleh petugas kesehatan lingkungan dengan membawa alat ukur dan melakukan pengukuran langsung di lokasi. Kesulitan dalam pemantauan kualitas udara dalam ruang, keterbatasan jumlah petugas kesehatan lingkungan, dan lamanya waktu yang dibutuhkan untuk mengukur kualitas udara dalam ruang menjadi permasalahan utama dalam sistem pemantauan, pencatatan, dan pelaporan kualitas udara dalam ruang. Sistem pemantauan, pencatatan, dan pelaporan dengan metode yang lama perlu digantikan dengan sistem pemantauan kualitas udara dalam ruang berbasis lokasi dan jaringan nirkabel dengan data yang didapat secara real time.
Penelitian ini bertujuan untuk mengembangkan sistem pengumpul data, menyediakan database management system, dan membangun dasbor (dashboard) penyedia informasi pemantauan kualitas udara dalam ruang. Daur hidup pengembangan sistem (systems development life cycle/SDLC) adalah proses pengembangan sistem informasi yang dapat mendukung kebutuhan bisnis, merancang sistem, membangun, dan mengirimkannya kepada pengguna. Pengembangan Agile adalah salah satu metode pengembangan sistem yang dilakukan dengan cara sederhana yaitu pemilik gagasan merencanakan pengembangan dari sistem yang sudah ada.
Kerja sama dengan pengembang dilakukan untuk menganalisis sistem yang ada, pembuatan desain, dan implementasi sistem. Sistem pemantauan kualitas udara dalam ruang berbasis lokasi dan jaringan nirkabel dapat mengukur enam parameter kualitas udara dalam ruang yang meliputi partikel debu, suhu udara, kelembaban relatif, karbonmonoksida, dan senyawa mudah menguap. Pemantauan parameter tersebut dilakukan secara real time dan dapat menjadi solusi agar sistem pemantauan, pencatatan, dan pelaporan bisa dijalankan lebih cepat dengan sumber daya minimal.

Poor air indoor quality can cause health problems. Monitoring of indoor air quality is currently carried out by environmental health officer by carrying a measuring instrument and making measurements directly at the location. Difficulties in monitoring indoor air quality, the limited number of environmental health officer, and the length of time needed to measure the indoor air quality are the main problems in the monitoring, recording and reporting system of indoor air quality. The old method of monitoring, recording and reporting systems needs to be replaced with wireless and location-based indoor air quality monitoring system with data obtained in real time.
This study aims to develop a data collection system, provide a database management system, and build dashboards that provide information on monitoring indoor air quality. Systems development life cycle (SDLC) is an information system development process that can support business needs, design systems, build and send them to users. Agile development is one method of system development that is done in a simple way, the author of the idea plans the development of an existing system.
Collaboration with the developer is carried out to analyze existing systems, design system, and implement systems. Wireless and location-based indoor air quality monitoring system can measure six air quality parameters which include dust particles, air temperature, relative humidity, carbon monoxide, and volatile organic compounds. Monitoring these parameters is done in real time and it can be a solution so that the monitoring, recording and reporting systems can be done swiftly with minimal resources.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2019
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syafi Muhammad Tauhid
"Pemanfaatan data untuk menghasilkan informasi yang dapat mendukung pengambilan keputusan bisnis semakin banyak diaplikasikan oleh berbagai perusahaan. Salah satu data yang dimanfaatkan dalam pengambilan keputusan tersebut adalah data pelanggan mengingat perannya dalam mengetahui perilaku pelanggan. Salah satu perusahaan yang memanfaatkan data pelanggan dalam pengambilan keputusan bisnis adalah English First (EF). Dalam membantu menetapkan strategi bisnis untuk meningkatkan perfoma penjualan, perusahaan menghadapi kendala penurunan performa penjualan perusahaan yang disebabkan oleh buruknya kualitas data pelanggan, sehingga strategi bisnis yang dihasilkan kurang tepat. Perusahaan berfokus kepada beberapa dimensi kualitas data pelanggan di perusahaan yaitu completeness, accuracy, dan consistency. Strategi untuk manajemen peningkatan kualitas data pada perusahaan perlu disusun guna penyusunan strategi bisnis yang tepat dan dapat meningkatkan performa penjualan. Penyusunan strategi manajemen peningkatan kualitas data dilakukan dengan melakukan penilaian terhadap dimensi-dimensi kualitas data untuk mengidentifikasi kondisi kualitas data saat ini di perusahaan EF. Selain itu, identifikasi kondisi manajemen dan praktek kualitas data di perusahaan saat ini juga dilakukan untuk dapat mengetahui kesenjangan antara kondisi perusahaan saat ini dengan kondisi yang diharapkan oleh perusahaan. Strategi peningkatan kualitas data yang dihasilkan dari analisis kesenjangan kondisi kualitas data dan manajemen & praktek kualitas data terdiri dari 8 (delapan) domain manajemen kualitas data. Delapan domain tersebut yaitu harapan dari kualitas data, penggunaan dimensi dari kualitas data, kebijakan data, prosedur, tata kelola data, standarisasi data, teknologi, dan pengelolaan kerja. Hasil dari strategi tersebut disusun menjadi rekomendasi solusi dan diurutkan berdasarkan prioritas dengan balance scorecard. Strategi yang memperoleh prioritas tinggi yaitu standardiasi aktifitas dan isu kualitas data serta mengidentifikasi ekspektasi dari kualitas data pada setiap dimensi kualitas data.

Data utilization to generate insights to support business decision making has been implemented in many companies. One of the most utilized data is customer data as it could provide information regarding customer’s behavior. One of the companies that utilize customer data is English First (EF). EF is a company in education sector and have more than 20 years of experience in Indonesia. EF utilize customer data in Customer Relationship Management system to produce a business strategy to boost company performance. However, since data in Customer Relationship Management system is stored by human, it has a low quality and resulted in a mismatch business strategy. Strategy to improve data quality management in the company needs to be produced in order to generate a precise business strategy and could boost company sales performance. Data quality assessment towards data quality dimensions needs to be done to produce a improve data quality management strategy. The assessment is needed to identify current data quality condition in EF. Other than that, identification of data quality management and practices in the company are needed to identify as-is management & practices in the company, company’s data quality expectation, and identify the gap between best practice & current condition. The result of data quality improvement strategy consists of 8 (eight) data quality management domains. Those domains are data quality expectation, data quality management, data quality, data policy, data procedure, data governance, data standardization, technology, and work management. The end result is a solution recommendation to improve data quality in EF and sorted by priority with the help of balance scorecard. The strategies that have high priority are company needs to standardized data quality activities and issues in the company as well as identify business expectation of each data quality dimension."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Krishna Yudhakusuma Putra Munandar
"Setiap tahunnya, volume data diprediksi akan semakin meningkat sehubungan dengan terdapat perkembangan teknologi pada masa sekarang dan hal tersebut menjadikan tantangan bagi setiap perusahaan dalam mengelola data dimaksud. Selain itu, pengelolaan data perlu secara maksimal agar dapat dimaksimalkan menjadi sebuah aset organisasi. PT DEF merupakan anak perusahaan PT ABC (Persero) yang bergerak di bidang agroindustri tebu dan merupakan perusahaan manufaktur dengan produk utamanya yaitu gula dan menghasilkan produk sampingan berupa tetes. Dengan menggunakan delapan aspek kualitas data dari Loshin’s Data Quality Framework dan Data Management Body of Knowledge (DMBOK) penelitian ini mencoba mengukur tingkat kematangan kualitas data di PT DEF. Aspek-aspek yang terdapat pada Loshin’s data quality framework yaitu harapan, dimensi kualitas data, kebijakan informasi, prosedur, standar data, teknologi dan pengelolaan kinerja. Berdasarkan temuan evaluasi tersebut, PT DEF memiliki tingkat kematangan pada level satu atau initial pada aspek kebijakan informasi, standardisasi data, dan pengelolaan kinerja. Sedangkan untuk aspek harapan kualitas data, dimensi kualitas data, prosedur, tata kelola, dan teknologi berada pada level dua atau repeatable. PT DEF mendapatkan sembilan rekomendasi tindakan yang dapat dilakukan untuk meningkatkan kualitas datanya berdasarkan hasil penilaian kematangan pengelolaan dan tingkat kematangan kualitas data yang diharapkan berdasarkan DAMA-DMBOK.

Every year, the volume of data is predicted to increase due to current technological developments and this creates challenges for every company in managing the data in question. Apart from that, data management needs to be optimal so that it can be maximized as an organizational asset. PT DEF is a subsidiary of PT ABC (Persero) which operates in the sugar cane agro-industry sector and is a manufacturing company whose main product is sugar and produces by-products in the form of molasses. By using eight aspects of data quality from Loshin's Data Quality Framework and Data Management Body of Knowledge (DMBOK), this research tries to measure the level of data quality maturity at PT DEF. The aspects contained in Loshin's data quality framework are expectations, data quality dimensions, information policies, procedures, data standards, technology and performance management. Based on the evaluation findings, PT DEF has a level of maturity at level one or initial in the aspects of information policy, data standardization and performance management. Meanwhile, for the aspect of data quality expectations, the dimensions of data quality, procedures, governance and technology are at level two or repeatable. PT DEF received nine recommendations for actions that can be taken to improve the quality of its data based on the results of the management maturity assessment and the expected level of data quality maturity based on DAMA-DMBOK."
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library