Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Pragistyo Machmud
"Biomachining merupakan proses alternatif fabrikasi mikro yang saat ini masih dalam tahap penelitian.Beberapa keunggulan dari biomachining yaitu low cost, energi yang efisien, menghindari thermal damage dan ramah lingkungan. Dalam penelitian kali ini penulis akan melakukan pengujian biomachining dengan menggunakan material nikel. Hasil yang akan diamati ialah bentuk profil permukaan hasil biomachining serta nilai MRR dan SMRR. Bentuk Profil tersebut berupa plot kontur, tingkat kedalaman permukaan dan juga tingkat roughness dari hasil permukaan yang dihasilkan. Pengujian dilakukan dengan 3 interval waktu yaitu 6, 12, dan 24 jam. Hasil kontur didapatkan dari plot data pengukuran menggunakan mesin SURFCOM. Hasil surface roughness juga dilakukan dengan menggunakan mesin SURFCOM. Hasil didapat bahwa terdapat tren kenaikan tingkat ruoghness walaupun tidak signifikan seiring dengan naiknya waktu biomachining. Semua nilai surface roughness pada waktu permesinan 6, 12 dan 24 jam pada biomachining nikel berada dibawah 1 μm. Tingkat kedalaman permukaan hasil biomachining bertambah hingga dua kali lipat seiring bertambahnya waktu pada rentang waktu pengujian 6, 12 dan 24 jam. Nilai MRR dan SMRR dari biomachining nikel cenderung mengalami peningkatan dalam interval waktu permesinan 6, 12 dan 24 jam. Hasil dari pengujian juga diambil gambarnya menggunakan mikroskop digital dinolite dan juga Scanning Electron Microscope (SEM) sebagai ukuran data kualitatif.

Biomachining an alternative micro fabrication process which is currently still in the research phase . Some of the advantages of biomachining are low cost, energy efficient , avoiding thermal damage and environmentally friendly. In the present study the authors will test biomachining using nickel material . The results will be observed are the shape of the surface profile result form biomachining results and the value of MRR and SMRR. The profile shape in the form of contour plots , surface depth and also the level of surface roughness of the results. Testing is done with 3 time intervals which are 6 , 12 , and 24 hours. The results obtained from the contour plot measurement data using SURFCOM machine. The results of surface roughness is also done using SURFCOM machine. The results obtained that there is an upward trend , although not significant, ruoghness levels along with rising biomachining time. All values of surface roughness on the machining time of 6 , 12 and 24 hours on biomachining nickel is below 1 μm. Surface depth biomachining results increased up todouble with increasing time in the period of testing 6 , 12 and 24 hours. MRR and SMRR value of biomachining nickel tends to increase in a intervals of biomachining 6 , 12 and 24 hours. The results of the test also were photographed using a digital microscope dinolite and Scanning Electron Microscope ( SEM ) as a measure of qualitative data."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53811
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisaa Yuniasih Suhendar
"Ilmu pengetahuan dan teknologi mengalami perkembangan dari tahun ke tahun, salah satunya adalah teknik fabrikasi. Saat ini, teknik fabrikasi telah mencapai skala mikro dan terus dilakukan pengembangan. Adanya dampak negatif dari penggunaan teknik mikrofabrikasi konvensional, baik pada benda kerja yang digunakan, maupun untuk lingkungan mendorong para peneliti untuk melakukan penelitian lebih jauh mengenai konsep green manufacturing. Teknik alternatif yang saat ini sedang dikembangkan adalah biomachining, yaitu proses permesinan yang dilakukan dengan memanfaatkan makhluk hidup sebagai media cutting tool. Dalam hal ini, salah satunya adalah bakteri Acidithiobacillus ferrooxidans. Pada penelitian sebelumnya, telah dilakukan karakterisasi terhadap profil rekayasa microneedle yang terbentuk melalui proses biomachining. Optimalisasi temperatur proses dengan rentang 300C - 350C dilakukan untuk menyesuaikan dengan kondisi temperatur lingkungan habitat bakteri yang digunakan. Penelitian ini dilakukan untuk mengetahui seberapa besar diameter rekayasa microneedle menggunakan material nikel yang dapat dicapai dengan parameter waktu yang berbeda. Pola yang digunakan sebesar 300 μm melalui photolithography menghasilkan diameter rata-rata sebesar 200 μm setelah proses biomachining. Data yang didapatkan dari proses biomachining yang dilakukan berupa perbandingan profil permukaan antarparameter, dimana berdasarkan nilai variansi diketahui tidak terjadi perbedaan yang signifikan terhadap kedalaman pemakanan pada proses biomachining selama 24 jam dan 48 jam. Oleh sebab itu, perlu diadakan kajian lebih jauh mengenai hubungan profil permukaan terhadap waktu proses, sehingga dapat dihasilkan keseragamanan hasil pada setiap penelitian yang dilakukan.

Science and technology have evolved over the years, one of them is a fabrication technique. Currently, fabrication techniques have achieved micro scale and continue to develop. The negative impacts of conventional microfabrication techniques on the workpiece being used and environment, encourage researchers to create further research on the concept of green manufacturing. Alternative techniques are currently being developed is biomachining, the machining process is done by microbacteria organisms as cutting tools. In this case, one of them is Acidithiobacillus ferrooxidans. In previous studies, it has been done characterization of engineering profile microneedle formed through a process biomachining. Optimization of the process temperature range of 30°C – 35°C to adjust to ambient temperature conditions habitat bacteria used. This study was conducted to determine how large diameter microneedle using nickel material that can be achieved with different time parameters. Pattern used is 300 μm by photolithography and produce an average diameter of 200 μm after biomachining process. Data were obtained from biomachining process was done are presenting in the form of comparison of surface profile from each parameters, which is based on the variance values are not known there is a significant difference in the depth of biomachining result for 24 hours and 48 hours. Therefore, should be further studies related surface profile and processing time, so it can produce uniformly result in any research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58132
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Gavin Dirgantara
"Maskless photolithography merupakan salah satu varian teknologi litografi dengan proses pemolaan pada substrat seperti wafer semikonduktor yang dilakukan tanpa mask. Terdapat berbagai jenis maskless photolithography, dengan salah satunya menggunakan laser sebagai basisnya. Pada riset ini, doping tipe-P pada semikonduktor silikon tipe-N dengan menggunakan metode maskless photolithography berbasis laser diteliti secara komprehensif. Selain itu, kecepatan, daya, dan frekuensi juga ditinjau agar parameter laser yang dapat digunakan untuk proses doping tipe-P pada semikonduktor silikon tipe-N dapat diketahui. Pada akhir penelitian ini, disimpulkan parameter kecepatan, daya, dan frekuensi untuk pembukaan diffusion window wafer silicon on insulator (SOI) untuk doping serta doping tipe-P di semikonduktor silikon tipe-N ialah 300 – 2.700 mm/s, 15 – 27 W, dan 80 kHz serta 300 mm/s, 28,5 W, dan 80 kHz.

Maskless photolithography is a variant of lithography technology where the patterning process on a substrate such as a semiconductor wafer is carried out without a mask. There are various types of maskless photolithography, one of which uses a laser as its basis. In this research, P-type doping on N-type silicon semiconductors by using a laser-based maskless photolithography method is comprehensively explored. In addition, speed, power and frequency are also assessed so that the laser parameters that can be used for the P-type doping process on N-type silicon semiconductors can be identified. At the end of this research, it is concluded that the speed, power and frequency parameters for opening the diffusion window of silicon wafer on insulator (SOI) for doping and P-type doping on N-type silicon semiconductors are 300 – 2,700 mm/s, 15 – 27 W, and 80 kHz as well as 300 mm/s, 28.5 W, and 80 kHz."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rayzi Rizqika
"Pengembangan metode fotolitografi dengan metode UV LED telah berkembang secara massif dalam satu dekade ini. Teknologi ini telah sangat dikenal untuk melakukan pembuatan pola dari suatu photo-mask yang selanjutnya akan ditransfer ke sebuah spesimen atau substrat dengan cara pencahayaan memakai sinar UV LED. Saat ini, teknologi fotolitografi telah dikembangkan secara lebih masif lagi untuk melakukan fabrikasi sebuah kanal mikro pada perangkat mikrofluidik. Untuk melakukan fabrikasi yang optimal pada sebuah kanal mikro yang terwujud dari desain photo-mask, maka parameter terbaik dibutuhkan untuk membuat kanal mikro yang sempurna. Pada bagian akhir riset ini, kami mendefinisikan karakteristik performa fotolitografi untuk parameterparameter yang telah ditetapkan.

The photolithography with UV LED has been greatly developed since the last decade. This technology is widely known to create a pattern from a photo-mask to the substrate with exposing the UV LED to the targeted specimen. In the recent years, this technology has been massively used to create a pattern of micro-channel on microfluidic devices. In order to fabricate such an optimum desired micro channel design from the mold or mask, a finest parameter is demanded to create a faultless microfluidic channel. At the end of the research, we define photolithography characteristics to perform for a predetermined parameter.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ignatia Averina Chita Nirmala
"ABSTRAK
Maskless photolithography menggunakan proyektor DLP merupakan
proses yang mudah dan sederhana, namun durasi pemaparan jika hanya
menggunakan cahaya tampak memakan waktu cukup lama. Inovasi yang diajukan
adalah pencahayaan hibrida antara sinar tampak dan sinar UV, dengan tujuan
mempersingkat durasi pemaparan. Dalam penelitian ini akan dibahas tentang
pengaruh pemaparan secara hibrida, yaitu penambahan cahaya UV pada pemaparan
dengan DLP, terhadap waktu yang dibutuhkan untuk proses pemaparan. Proyektor
DLP memiliki sebuah chip DMD yang fungsinya memantulkan cahaya secara pixel,
maka DLP dapat digunakan sebagai alat maskless photolithography. Jika
gelombang cahaya semakin kecil, maka frekuensi semakin besar, sedangkan energi
berbanding lurus dengan frekuensi. Maka itu dibutuhkan gelombang cahaya yang
kecil, agar intensitas yang masuk lebih banyak dan mempersingkat waktu.
Pemaparan hibrida dilakukan dengan menggabungan cahaya sinar UV dari luar
proyektor DLP. Dalam penelitian ini didapatkan rasio antara sumber hibrida dan
total durasi pemaparan sebesar 1:15. Hasil yang didapat dengan metode tersebut
dapat mempercepat proses pemaparan sekitar 60%, dibandingkan dengan cahaya
tampak saja.

ABSTRACT
Maskless Photolithography using DLP projector is simple and easy, but
with only visible light as its source, the exposure process takes quite some time.
This research purposed hybrid lighting from visible light and UV light with the aim
of shortening the exposure time. This research will explain about how the DLP
works to provide maskless photolithography and the effect of UV light addition to
the exposure time. DLP projector has a chip, called DMD, to reflect light from the
source in pixel form, therefore, DLP can be used for maskless photolithography.
The shorter the wavelength of light, the higher the frequence of that light, and
energy is directly proportional to frequency. Thats why maskless photolithography
needs light with short wavelength. This hybrid light system has been done with
combining two light sources which are visible light in the DLP projector and adding
UV light from the outside. This hybrid exposure. In this research, the ratio between
hybrid lighting and total exposure time is 1:15. The result that we get from this
method saves around 60% of time that was consumed with visible light exposure.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohamad Taufiqurrakhman
"Teknologi fabrikasi berskala mikro saat ini sangat bervariasi dan sedang terus dikembangkan. Salah satunya menggunakan mikroorganisme (biomachining). Terdapat jenis bakteri yang dapat melakukan pemakanan pada logam sebagai sumber energinya, salah satunya adalah Acidithiobacillus ferooxidans. Penelitian sebelumnya telah membuktikan kemampuan Acidithiobacillus ferooxidans dalam karakterisasi proses pemakanan dan hasil akhir material benda kerja. Namun, perkembangan teknologi biomachining belum selesai.
Dalam penelitian ini, proses biomachining diberikan tambahan parameter variasi sudut inklinasi terhadap benda kerja material tembaga untuk mengetahui pengaruhnya terhadap profil permukaan dan tingkat kekasaran yang dihasilkan. Benda kerja diberi sebuah pola dengan metode photolithography dan dimasukkan dalam cairan medium kultur bakteri, dengan diberikan sudut inklinasi sebesar 20° dan 30° dengan alat bantu inklinator. Data hasil pengukuran bentuk profil dan tingkat kekasaran permukaan oleh mesin SURFCOM akan dibandingkan dengan hasil biomachining yang diberi sudut inklinasi berbeda yaitu 40° dari hasil penelitian sebelumnya.
Hasil penelitian ini yaitu pemakanan sampel 20° memiliki kedalaman yang lebih kecil dibandingkan dengan sampel 30°, namun center island yang dihasilkan cenderung lebih panjang. Tren untuk nilai tingkat kekasaran (Ra) yaitu sampel 20°>30°>40°. Perbedaan karakteristik pemakanan ini diharapkan dapat mendukung pengembangan proses biomachining multi-axis kedepannya.

Nowadays, micro fabrication technology is very varied and being continuosly developed. One of them uses microorganisms culture (biomachining). There is a type of bacteria which can do metal removal as a source of energy, one of which is Acidithiobacillus ferooxidans. The previous research has proven the ability of Acidithiobacillus ferooxidans in the characterization and result of workpiece material removal process. However, biomachining technology has not done yet.
In this research, biomachining process is added by angle of inclination parameter to know the effect on copper surface profile and roughness. Workpieces are given a pattern by photolithography method and put in the bacterial culture medium, which is added inclination angle of 20° and 30° on inclinator. Profile shape and the surface roughness measurement data which are taken by SURFCOM machine will be compared with the inclination angle of 40° measurement data from previous research.
The results of this research that removal depth of sample 20° is smaller than the sample 30°, but the center island tend to be longer. Result for the value of roughness average (Ra) is the sample 20° > 30° > 40°. This characteristic differences are expected can support the development of multi-axis biomachining.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53970
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angga Darmawan
"Teknologi fabrikasi dengan skala mikro saat ini tengah menjadi trend yang berkembang di dunia. Contoh yang nyata adalah pengembangan ukuran channel sebagai media heat transfer dan pengaturan fluida yang kini sudah menjadi microchannel. Salah satu pengembangan pada teknologi fabrikasi mikro yang merujuk pada konsep Green Manufacturing adalah menggunakan mikroorganisme sebagai cutting tools (biomachining) dengan menggunakan bakteri Aciditiobacillus ferroxidans yang menjadikan logam sebagai sumber energinya. Dalam penelitian ini, dilakukan beberapa penambahan parameter pada proses biomachining seperti waktu pemakanan (72, 96, dan 120 jam) untuk mengetahui pengaruhnya terhadap profil dan tingkat kekasaran permukaan, serta kesesuaian geometri microchannel dalam proses manufaktur pada material tembaga. Benda kerja diberi pola microchannel melalui metode photolithography dan dimasukan ke dalam cairan medium kultur bakteri untuk dilakukan pemakanan. Data hasil pengukuran yang diambil dengan mesin SURFCOM menunjukan ukuran channel yang di dapatkan mencapai 200 μm. Selain itu, semakin lama waktu pemakanan, semakin besar pula kedalaman yang dihasilkan dimana didapatkan hasil rata-rata profil kedalaman 179,7 μm pada channel terluardan 42,6 μm pada channel dalam . Begitu juga pada tingkat kekasaran yang dihasilkan. Hal ini berbanding terbalik dengan kesesuaian ukuran microchannel yang dihasilkan, dimana semakin lama waktu pemakanan, semakin berkurang akurasi ukuran microchannel yang dihasilkan. Perbedaan karakteristik ini diharapkan mampu mendukung proses bomachining microchannel kedepannya.

Fabrication of micro-scale technology currently being a growing trend in the world. A real example is the development of the size of the channel as a medium of heat transfer and fluid settings which is now already a microchannel. One of the development on the technology of micro fabrication which refers to the concept of Green Manufacturing is the use of microorganisms as the cutting tools (biomachining) using bacteria Aciditiobacillus ferroxidans makes metal as a source of energy. In this study, done some addition of process parameters on biomachining as time consumption (72, 96, and 120 hours) to know its effects on the profile and level of surface roughness, as well as the suitability of the microchannel geometry in the manufacturing process on copper material. The workpiece is given the pattern of microchannel through photolithography method and entered into the liquid medium cultures of bacteria to do the eating. Results measurement data taken with the engine showed the channel size SURFCOM in the get reaches 200 μm. In addition, the longer the time consumption, the greater the resulting depth where also obtained average results profile depth of 179,7 μm on outer channel and 42.6 μm on the channel. Similarly, at the level of rudeness that is generated. It is inversely proportional to the size of the resulting microchannel suitability, where the longer the time consumption, diminishing the accuracy of microchannel size is generated. The difference of these characteristics are expected to support the process of microchannel bomachining future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59445
UI - Skripsi Membership  Universitas Indonesia Library