"Perkembangan LargeLanguageModel (LLM) terjadisecaracepatdanmengalami kemajuanyangsignifikan.HalinimendorongpenggunaandanpemanfaatanLLM pada berbagaibidang.Disisilain, KnowledgeGraph (KG) menyediakancarayang terstruktur danbermaknauntukmenyimpaninformasi.KGsudahbanyakdigunakan secara luasdiberbagaiaplikasi,sepertimesinpencari,sistemrekomendasi,dansistem penjawabpertanyaan.SalahsatupemanfaatanLLMdanKGyangmasihjarangadalah pada bidangjurnalistik,khususnyauntukmenganalisisdanmemvisualisasikanberita. Penelitian inibertujuanuntukmengembangkanalatekstraksiinformasiyangefisien, akurat, daninteraktifuntukmenganalisisteksberitamenggunakanpendekatangabungan antara LLMdanKG.Metodeinimenggabungkankeunggulankeduatekniktersebut untuk meningkatkanpemahamandanekstraksiinformasidariteksberitayangkompleks. Tujuannyaadalahagarpembacadapatmemahamiinformasiyangterdapatpadateks berita denganlebihinteraktif.PenulismemanfaatkanLLMyangtelahterlatihsecara luas dalammemahamidanmenghasilkanteksuntukmengidentifikasiinformasipenting dalam teksberita,sepertientitas,sentimen,kutipan,relasiantarentitas,danunsur5W1H (Who, What, Where, When, Why, How), urutankronologiskejadian,danhubungan bagian-keseluruhan(mereology) dalamteksberita.Untukmengekstraksiinformasiterse- but, prompt dimodifikasi denganmenggunakanpendekatan one-shot-prompting untuk memberikan konteksdancontohkepadaLLMdalammemahamiteksberita.Kemudian, informasi yangdiekstraksidivisualisasikandalambentukKGyangmerepresentasikan pengetahuan terstrukturtentangentitasdanhubungannyadidalamteks.Selainitu, penelitian melibatkanpembuatansebuahwebsiteyangakanmenyediakanantarmuka untuk sistemagarpenggunadapatmelakukananalisisteksberitasecaralangsungdan interaktif. Evaluasiutamayangdilakukanpadapenelitianiniadalahmengukurakurasi jawabanyangdihasilkanolehLLMpadasetiapbagianinformasiyangdiekstraksi dan bagaimanavisualisasiKGyangbaikuntukinformasiyangdidapat.Penelitianini menunjukkan bahwaLLMmampumengekstraksiinformasiyangdiinginkandengan cukup akuratdanvisualisasiKGdapatmenyajikaninformasidenganlebihinteraktif dan mudahdimengerti.PenelitianinitelahmenunjukkanbahwaLLMdanKGdapat dimanfaatkansebagaialatekstraksidanvisualisasiinformasiyangadapadateksberita.
The developmentoftheLargeLanguageModel(LLM)israpidlyoccurringandex- periencing significantprogress.ThisencouragestheuseandutilizationofLLMin variousfields.Ontheotherhand,KnowledgeGraph(KG)providesastructuredand meaningful waytostoreinformation.KGhasbeenwidelyusedinvariousapplications, such assearchengines,recommendationsystems,andquestionansweringsystems. One utilizationofLLMandKGthatisstillrarelyusedisinthefieldofjournalism, especially foranalyzingandvisualizingnews.Thisresearchaimstodevelopaneffective, interactive,andaccurateinformationextractiontoolforanalyzingnewstextsusing a combinedapproachbetweenLLMandKG.Thismethodcombinestheadvantages of bothtechniquestoimprovetheunderstandingandextractionofinformationfrom complexnewstexts.Thegoalisforreaderstounderstandtheinformationcontainedin the newstextinteractively.TheauthorutilizesLLMswhohavebeenextensivelytrained in understandingandgeneratingtextstoidentifyimportantinformationinnewstexts, such asentities,sentiments,quotes,relationsbetweenentities,and5W1H(Who,What, Where, When,Why,How),chronologicalorderofevents,andpart-wholerelationships (mereology) elementsinnewstexts.Toextractthatinformation,thepromptwasmodified by usingaone-shot-promptingapproachtoprovidecontextandexamplestoLLMsin understanding thenewstext.Then,theextractedinformationisusedtobuildaKGthat represents structuredknowledgeaboutentitiesandrelationshipsinthetext.Inaddition, the developmentplaninvolvescreatingawebsitethatwillprovideaninterfaceforthis system toallowuserstoperformliveandinteractivenewstextanalysis.Themain evaluationconductedinthisresearchistomeasuretheaccuracyoftheanswersgenerated by LLMoneachpieceofinformationextractedandhowgoodKGvisualizationisfor the informationobtained.ThisresearchshowsthatLLMisabletoextractthedesired information quiteaccuratelyandKGvisualizationcanpresentinformationinamore interactiveandeasytounderstandmanner.ThisresearchhasshownthatLLMandKG can beusedasinformationextractionandvisualizationtoolsinnewstexts."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024