Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 205 dokumen yang sesuai dengan query
cover
Indrio Tjahjo
"PT.X telah memiliki pengalaman operasional dan reputasi yang balk selama berpuluh tahun dalam menggeluti bidang bisnis Percetakan Security khususnya uang kertas yang sangat vital dan memiliki pasar yang captive.
PT.X secara teoritis memiliki kapasitas produksi diatas permintaan, namun masih memiliki permasalahan dalam hal ketepatan penyerahan produknya. Perrnasalahan ini diakibatkan terjadinya penyimpangan performa standar dari unit Flokulasi ( pengolah limbah tinta ) yang berdampak pada menurunnya kinerja permesinan di unit cetak Intaglio. Disisi lain PT.X berupaya untuk meningkatkan kemampulabaan dan kemamputumbuhan , oleh karena itu upaya yang diambil PT.X adalah memperbaiki sekaligus meningkatkan kinerja sistim produksinya.
Untuk mengatasi permasalahan tersebut, maka dikembangkan suatu bentuk Strategi Manufaktur yang diimplementasikan melalui langkah - langkah perbaikan pada sistim pengendalian proses Flokulasi. Adapun langkah pertama yang dilakukan adalah untuk mengetahui kondisi aktual perusahaan termasuk kinerja dari lini permesinannya, dimana metode yang dipakai adalah analisa kuantitative atas laporan keuangan dan analisa kinerja bisnis yaitu analisa SWOT.
Sedangkan kondisi kinerja Manufaktur dari unit Produksi diukur dengan memakai rasio MCE (Manufacturing Cycle Effectiveness) , rasio Machine Effectiveness dan sebagai pembanding dilakukan analisa Benchmarking atas dua Industri sejenis.
Metode yang dipakai untuk meningkatkan mutu sistim pengendalian proses Flokulasi adalah dengan mengembangkan suatu bentuk teknologi berberbasis Artificial Neural Network, yang memiliki kemampuan untuk memprediksi hasil akhir/output dari proses Flokulasi yang sedang berlangsung.
Semua ini akan menunjang usaha peningkatan kemampulabaan ,kemamputumbuhan terutama dari segi mutu produk dan ketepatan waktu penyerahan produk sesuai dengan tuntutan konsumen.

PT.X has many years of operational experience and a good reputation in the business of Security Printing especially paper money and has a Captive market.
Theoretically PT.X has a production capacity exceeding the demand , but has problem in the delivery time. This in turn lowers the machinery performance in the Intaglio printing section, which is basically due to the deviation of the performance standard of the Flocculation unit from the water treatment plant.
PT.X expect to increase profitability and growth by enhancing the performance of the production system.
To solve this problem by developing a form of Manufacturing Strategy implemented through remedial steps taken in the process control system of the Flocculation unit. The first step is to know the actual condition of the company including the production line machinery . This is done through the quantitative analysis from the financial reports and qualitative analysis of business performances using a SWOT analysis. The next step is to measures the manufacturing performance from the capability of production facility by Manufacturing Cycle Effectiveness ratio, Machine Effectiveness ratio and Benchmarking analysis .
The method used in order to enhance quality of the Flocculation process is through the development of technology based on Artificial Neural Network, which is to predict the output of Flocullation process.
We concluded that new system will be useful to help improvement effort for the company to increase profitability and growth, such as product quality and delivery time in accordance with the requirement."
Depok: Fakultas Teknik Universitas Indonesia, 2001
T9465
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Ilham Fauzi
"ABSTRAK
Tesis ini membahas identifikasi sistem kiln semen dengan Jaringan Syaraf Tiruan (JST), yang meliputi penentuan parameter yang dibutuhkan untuk pemodelan sistem tersebut, dan perancangan JST yang digunakan untuk identifikasi tersebut. Dalam tesis ini digunakan struktur Multi-Layer Feedforward Network yang terdiri dari lapisan masukan, lapisan keluaran dan 2 buah lapisan tersembunyi. Data diperoleh dari kiln semen yang sebenarnya yaitu dari Pabrik Tuban-II PT. Semen Gresik (Persero) tbk., kemudian data tersebut digunakan untuk melatih JST. Untuk melakukan identifikasi menggunakan model masukan-keluaran dengan struktur serial-paralel dan pelatihan JST tersebut menggunakan algoritma Error Back Propagation. Hasil identifikasi selanjutnya disimulasikan dan dibandingkan dengan plant yang sebenarnya.

ABSTRACT
This thesis discuss about system identification of cement kiln using Artificial Neural Network (ANN). The process of system identification using ANN requires to define of the input and output parameters, and to decide ANN's structure. In this thesis, the Feedforward Multi-Layer Network is used which contain input layer, output layer and two hidden layers. The data are collected from the real cement kiln at Pabrik Tuban-II PT. Semen Gresik (Persero) tbk, then good data are selected for training the ANN. In this thesis is using Serial-Parallel Structure and training algorithm is using Error Back Propagation method. The result of the identification is then simulated and compared to the real plant.
"
Fakultas Teknik Universitas Indonesia, 2001
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Linda Rostiviani
"Dalam teori jaringan neural buatan (JNB) telah dikembangkan berbagai jenis jaringan neural yang berbeda. Diantaranya ada beberapa yang sudah cukup sering digunakan, misalnya jaringan propagasi balik dan jaringan swa-organisasi. Propagasi balik telah sukses digunakan untuk menyelesaikan berbagai permasalahan pengenalan, klasifikasi, aproksimasi, prediksi dan lain-lain. Namun jaringan propagasi balik membutuhkan waktu yang lama dalam pembelajarannya. Jaringan swa-organisasi mempunyai kemampuan klustering yang baik dan waktu pembelajaran yang singkat.
Penelitian ini akan merancang sebuah jaringan hibrid dengan cara menggabungkan propagasi balik dan swa-organisasi untuk mendapatkan kemampuan pengenalan yang lebih baik dan waktu pembeiajaran yang lebih singkat. Jaringan hibrid yang terbentuk, terdiri dari 2 modul, yaitu: modul swa-organisasi adaptif dan modul supervisi. Modul swa-organisasi adaptif bersifat tanpa pengarahan dan bobot-bobotnya dikontrol oleh pola masukan. Modul supervisi yang bersifat dengan pengarahan diarahkan oleh target yang telah ditentukan.
Karakteristik jaringan akan dilihat dengan kasus XOR. Kemampuan pengenalan jaringan diuji dengan menggunakan data aroma Martha Tilar dan konsentrasi etanol. Hasil penelitian menunjukkan jaringan hibrid dapat mengenali pola yang dilatihkan, pola yang tidak dilatihkan dan dapat mengidentifikasi kelas pola baru yang tidak diikutsertakan dalam pelatihan. Hasil perbandingan dengan jaringan propagasi balik standar memperlihatkan bahwa jaringan hibrid mempunyai kemampuan pengenalan yang lebih baik dan waktu pembelajaran yang lebih singkat."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Bambang Priyo Darminto
"ABSTRAK
Kompresi merupakan upaya untuk meningkatkan efisiensi penyimpanan berkas.
Tesis ini membahas suatu metodologi kompres dengan menerapkan Differential Coding
dalam suatu jaringan neural yang mekanisme kerjanya bersifat unsupervised learning
yang disebut Kohonen Self-Organizing Maps (KSOM).
Penerapan Differential Coding dalam KSOM (DC-KSOM) ini lebih menekankan
pada aspek kualitas rekonstruksi citra dekompres daripada waktu komputasi, dan
metode ini merupakan jenis lossy compression. Mekanismenya diawali dengan pra-
proses citra, proses clustering blok data, differential coding, dan diakhiri entropic
coding untuk memperoleh citra terkompres. Dengan mempertimbangkan topological
properly, Jaringan Neural KSOM (JN-KSOM) berperan untuk mengkuantisasi vektor
citra asli melalui proses pengelompokkan (peng-cluster-an) vektor-vektor pewakil
(codebook) dari setiap blok. Proses clustering ini akan mengakibatkan reduksi dimensi
data sehingga akan diperoleh hasil kompresi suatu berkas citra.
Hasil uji coba penelitian menunjukkan bahwa Root Mean Square Error (RMSE)
matriks citra dekompres dengan DC-KSOM adalah 4,29229337, relatif Iebih rendah
dibanding TCD yaitu 7,95840738, yang berarti bahwa kualitas citra dekompres hasil
kompresi DC-KSOM lebih baik daripada TCD. Dari 10 citra yang dikompres, hasil
kompresi dengan DC-KSOM menunjukkan nilai RMSE yang relatif stabil/reliable.

"
Fakultas Ilmu Komputer Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hangganis Septiastuti Puspitasari
"Saat ini banyak bermunculan jasa pengiriman paket barang. Hal ini memicu perusahaan pengiriman paket barang memberikan kualitas layanan yang baik kepada para konsumennya. PT Pos Indonesia merupakan BUMN yang bergerak di bidang jasa pengiriman surat dan paket. PT Pos Indonesia sedang berusaha meningkatkan kualitas layanannya untuk mengambil kembali pangsa pasar pengiriman paket barang.
Dalam upaya meningkatkan kualitas layanannya diperlukan sebuah metode pengukuran kualitas layanan yang bisa memberikan gambaran secara akurat penilaian kualitas menurut persepsi pelanggan. Artificial Neural Network (ANN) merupakan salah satu bagian dari data mining yang dapat digunakan untuk pengukuran kualitas. Namun, ANN memiliki keterbatasan dalam penentuan nilai parameter yang digunakan.
Penelitian ini bertujuan mengintegrasikan Genetic Algortihm dan ANN untuk mengoptimasi nilai paramater sehingga diperoleh hasil pengukuran kualitas yang akurat. Data penilaian kualitas menurut persepsi pelanggan diperoleh melalui survey menggunakan kuesioner.
Hasil pengukuran kualitas menggunakan integrasi ANN-GA menunjukkan bahwa nilai kualitas layanan paket barang PT Pos Indonesia secara keseluruhan sudah baik. Selain itu, performa hasil pengukuran menggunakan integrasi ANN-GA lebih bagus daripada menggunakan metode ANN.

Today many emerging parcel delivery services. This triggers the parcel delivery company provide good quality service to its customers. PT Pos Indonesia is a state-owned enterprise engaged in mail and parcel delivery services. PT Pos Indonesia is trying to improve the quality of its services to take back market share package delivery goods.
In an effort to improve service quality required a method of measuring the quality of service that can give an accurate quality assessment according to customer perceptions. Artificial Neural Network (ANN) is one part of data mining that can be used to measure quality. However, ANN has limitations in determining value of the parameters used.
This research aims to integrate Genetic algorithm and ANN to optimize value of parameters in order to obtain an accurate quality measurement results. Data quality assessment according to customers' perceptions obtained through surveys using questionnaires.
Quality measurement results using ANN-GA integration shows that service quality of parcel delivery PT Pos Indonesia as a whole has been good. In addition, the performance measurement results using the integration ANN-GA better than using ANN.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T41483
UI - Tesis Membership  Universitas Indonesia Library
cover
Roan Gylberth
"ABSTRAK
Neural networks merupakan salah satu pendekatan yang sering digunakan dalam melakukan analisis data. Dalam perkembangannya, neural networks mencapai kesuksesan dalam berbagai bidang, mulai dari pengenalan gambar, representasi bahasa,hingga bio informatika. Beberapa penelitian terakhir menunjukkan bahwa model neural networks memiliki kekurangan dalam melindungi informasi yang terdapat dalam training set agar tidak dapat dieksploitasi oleh pihak-pihak yang tidak berkepentingan. Kekurangan ini dapat dieksploitasi dengan membuat sebuah model yang dapat menentukan apakah seseorang berada dalam training set atau tidak, dan hasilnya dapat digunakan untuk melanggar privasi orang tersebut. Eksploitasi ini disebut dengan serangan membership inference. Serangan membership infrerence dapat dihindari oleh model yang memenuhi kriteria differential privacy, yaitu probabilitas keluaran dari model pada dua database yang berbeda pada satu baris pada dasarnya mirip. Pada tesis ini, dikembangkan algoritma optimisasi berbasis gradien seperti Momentum, Nesterov, RMSProp dan Adam yang memenuhi kriteria differential privacy. Algoritma yang dikembangkan digunakan untuk melatih model neural networks agar memenuhi kriteria differential privacy. Eksperimen yang dilakukan menunjukkan bahwa algoritma yang dikembangkan dapat digunakan untuk melatih model neural networks dan menghasilkan model yang lebih akurat dibandingkan algoritma stochastic gradient descent yang memenuhi kriteria differential privacy. Diperlihatkan juga pengaruh penjaminan privasi terhadap akurasi model yang dilatih menggunakan algoritma yang dikembangkan, yaitu penjaminan privasi yang lebih kuat menghasilkan akurasi model yang lebih rendah, dan sebaliknya.

ABSTRACT
Neural networks is one of the popular approach to analyze data. It has showed excellent ability to tackle complex problems in various domain, e.g., computer vision,language representation, and bioinformatics. At some point, neural network model may leak some information about the training data. This leakage could be exploited by adversaries to violate individuals in the training data. Membership inference attack is one kind of attacks that could be used by the adversary. This attack can be mitigated by using differentially private models. In this thesis, differentially private optimization algorithms, i.e., momentum, nesterov, rmsprop, adam, were developed. These algorithms then used to train a differentially private neural networks model. It was shown by the experiments conducted that these algorithms can be used to train a neural networks model, and yields better model accuracy compared to stochastic gradient descent algorithm. The tradeoff between privacy and utility is also studied.
"
2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Harwikarya
"Telah dilakukan penelitian metodologi segmentasi dan klasiiikasi citra synthetic aperture radar (SAR) bcrdasarkan Pulse Coupled Neural Networks (PCNN) dikombinasilcan dengan ciri teksturf Langkah awal penelitian ialah mencari variabel optimal pada persamaan PCNN. Segmentasi citra dilakukan menggunakan tiga macam metoda yang diusulkan yaitu pertama berdasarkan PCNN yang variabelnya telah dibuat optimal, kedua yaitu berdasarkan modiiikasi proses iterasi PCNN dan ketiga berdasarkan mod'kasi persamaan PCNN. Hasil segmentasi tiga teknik ini dapat memisahkan wilayah sesuai ground truth, tetapi pada jumlah iterasi tertentu masih telj adi tumpang tindih. Klasiikasi berdasarkan PCNN dilakukan dua tahap yaitu pertama mengelmraksi ciri tekstur citra. Ekstraksi ciri ini menggunakan perhitungan Grey Level Co-occurrence Matrix (GLCM). Dipilih tiga macam ciri yaitu diss|'m1`!arity, correlation dan angular second moment. Tiga ciri ini menjadi masukan pada PCNN untuk diiterasi. Hasil yang sangat menonjol dari rangkaian elcsperimcn. ini ialah didapatkannya variabel optimal persamaan PCNN yang tegar, metoda modiiikasi iterasi persamaan PCNN yang dapat menghlndari terjadinya tumpang tindih pada dua kelas wilayah hasil segmentasi, modiiikasi persamaan PCNN menjadi empat pereamaan yang dapat mempercepat segmentasi, dan hasil yang menonjol lainnya ialah dapat digunakannya PCNN ini untuk klasiftkasi ciua SAR yang bertekstur dan multi wilayah setelah dikombinasikan dengan ciri tekstur dan ketepatan klasifilasi berdasarkan PCNN yang diusulkan mencapai 91,58$% untuk pita L, 88, 31% untuk pita C dan 85,33%, untuk pita P.

The new methodology on segmentation and classification of Synthetic Aperture Rofar (SAR) based on Pulse Coupled Neural Networks (PCNN) and features texture was proposed in this dissertation. The tirst step of this research is timing the variables of the PCNN. The segmentation is based on new methods which proposed in this dissertation. First by iterating the images used optimal PCNN, the second method by modifying the iteration of the PCNN, and the third method by modilymg the equations of the PCNN. The results of these experiments are good enough, but in one of some iterations the result was overlap, in this case two area of the image were appeared in the binary image. The classification based on PCNN would be in two steps, Erst was the features extraction. The features were extracted by using the Gray Level Co-occurrence Matrix (GLCM). Three features, dissimilarity, correlation and angular second moment were selected to be processed by the PCCNN. The significant results of the experiments are, optimal variables of the PCNN which are robust, the new method of iteration of the PCNN which be able to avoid over lapping in segmentation, the new method of modification PCNN equation could increases the speed of segmentation and classification, and new method the application of PCNN in the segmentation and classification ofthe textural and multi region SAR images. Total accuracy for L band is 9l,58%, C band is 88,31% and'P band is 85, 33%."
Depok: Universitas Indonesia, 2009
D968
UI - Disertasi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>