Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Aulia Rahman
"Aktivitas produksi dan ekspor komoditas kelapa sawit terus mengalami ekspansi dan peningkatan. Indonesia memiliki perkebunan kelapa sawit dengan luas mencapai 12.761.586 Hektar. menjadikan Indonesia sebagai salah satu penghasil CPO (Crude Palm Oil) terbesar di dunia. Keberhasilan produksi dari kelapa sawit tidak terlepas dari kegiatan perencanaan dan pengawasan sehingga diperlukan pemantauan secara cepat dan efektif. Penelitian ini dilakukan dengan tujuan untuk mengetahui karakteristik dan pola persebaran umur kelapa sawit berdasarkan nilai backscatter pada citra radar Sentinel-1. Data berupa citra radar Sentinel-1 digunakakan untuk dapat melakukan estimasi terhadap umur kelapa sawit berdasarkan nilai backscatter menggunakan pendekatan machine learning. Hasil pemodelan menunjukan bahwa tren nilai backscatter terhadap umur kelapa sawit memiliki karakter berbanding lurus dengan umur kelapa sawit. Estimasi umur kelapa sawit berdasarkan nilai backscatter pada Sentinel-1 GRD menghasilkan 3 kelas umur kelapa sawit dengan tingkat overall accuracy sebesar 93.3% pada anlisis yang dilakukan secara Single Time, sedangkan pada analisis time series diperoleh nilai overall accuracy sebesar 94.5% Hasil menunjukkan bahwa kelas umur dewasa memiliki nilai z score sebesar -4.190963 dengan pola persebaran clustered (mengelompok), kelas umur taruna dengan z score -8.388942 berpola clustered (mengelompok), dan kelas umur remaja dengan perolehan nilai z score 7.801667 dengan pola persebaran dispersed (seragam).

Production and export activities of palm oil commodities continue to expand and increase. Indonesia has oil palm plantations with an area of ​​12,761,586 hectares. making Indonesia one of the largest CPO (Crude Palm Oil) producers in the world. The success of production from oil palm cannot be separated from planning and monitoring activities so that it is necessary to monitor quickly and effectively. This research was conducted with the aim of knowing the characteristics and patterns of age distribution of oil palms based on the backscatter value on Sentinel-1 radar images. Data in the form of Sentinel-1 radar images are used to estimate the age of oil palms based on the backscatter value using a machine learning approach. The modeling results show that the trend of the backscatter value of the age of the oil palm has a character that is directly proportional to the age of the oil palm. Oil palm age estimation based on the backscatter value on Sentinel-1 GRD resulted in 3 oil palm age classes with an overall accuracy rate of 93.3% in the Single Time analysis, while the time series analysis obtained an overall accuracy value of 94.5%. adults have a z score of -4.190963 with a clustered distribution pattern, the cadet age class with a z score of -8.388942 with a clustered pattern, and the adolescent age class with a z score of 7.801667 with a dispersed distribution pattern."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vien Aulia Rahmatika
"Kepolisian Republik Indonesia (Polri) merupakan alat negara yang terus berusaha memberikan pelayanan publik secara prima salah satu nya dengan melakukan inovasi dengan memanfaatkan teknologi dalam memberikan pelayanan SIM melalui aplikasi bernama Digital Korlantas Polri. Namun sejak aplikasi tersebut diluncurkan pada tahun 2021 hingga tahun 2022 terdapat pemberitaan di berita online terkait kendala pada aplikasi dalam perpanjangan SIM online yang tidak berjalan sebagaimana semestinya. Penelitian ini bertujuan untuk melihat bagaimana pandangan masyarakat sebagai pengguna layanan dari Twitter dan Play Store. Data yang digunakan dalam penelitian ini berasal dari Twitter dan Play Store sebanyak 5944 data. Analisis dilakukan dengan membangun model klasifikasi relevansi, aspek, dan sentimen pada aspek reliability, efficiency, trust, dan citizen support. Algoritma yang digunakan yaitu Decision Tree, Logistic Regression, dan SVM. Hasil pemodelan klasifikasi dengan performa yang paling tinggi dalam klasifikasi relevansi, aspek, dan sentimen pada tiap aspek dihasilkan oleh algoritma Logistic Regression dengan TF-IDF unigram dan SMOTE. Pada model klasifikasi relevansi didapatkan nilai accuracy sebesar 87.05%, precision sebesar 87.38%, recall sebesar 87.04%, dan f1 score sebesar 87.16%. Pada model klasifikasi aspek, nilai accuracy sebesar 74.28%, precision sebesar 75.93%, recall sebesar 74.27%, dan f1 score sebesar 74.70%. Pada model klasifikasi sentimen pada masing-masing aspek, model klasifikasi sentimen pada aspek citizen support mendapatkan nilai yang paling tinggi dibanding aspek lain yaitu dengan nilai accuration sebesar 95.38%, precision sebesar 95.60%, recall sebesar 95.38%, dan f1-score sebesar 94.05%. Pada penelitian ini menghasilkan temuan sentimen pada masing-masing aspek dalam layanan perpanjang SIM online di aplikasi Digital Korlantas Polri dimana reliability merupakan aspek yang paling banyak dikemukakan dan mendapat sentimen negatif, kemudian diikuti oleh aspek efficiency, citizen support, dan aspek trust.

The Indonesian National Police (Polri) continues to strive to provide excellent public services, one of which is by innovating by utilizing technology in providing SIM services through an application called Digital Korlantas Polri. However, since the application was launched in 2021 to 2022 there have been reports in online news regarding problems with applications, so it is necessary to conduct research regarding how the public views the application as service users and maps these views into aspects which affect the quality of government services so that service providers can take improvement to realize excellent service delivery. The data used in this study are from Twitter and Play Store as many as 5944 data. The analysis is carried out by building a classification model of relevance, aspect, and sentiment on the aspects of reliability, efficiency, trust, and citizen support. The algorithms used are Decision Tree, Logistic Regression, and SVM. The results of classification modeling with the highest performance in the classification of relevance, aspect, and sentiment for each aspect were produced by the Logistic Regression algorithm with the TF-IDF unigram and SMOTE. In the relevance classification model, the accuracy value is 87.05%, precision is 87.38%, recall is 87.04%, and f1 score is 87.16%. In the aspect classification model, the accuracy value is 74.28%, precision is 75.93%, recall is 74.27%, and f1 score is 74.70%. In the sentiment classification model for each aspect, the sentiment classification model for the citizen support aspect gets the highest score compared to other aspects, namely with an accuracy value of 95.38%, a precision of 95.60%, a recall of 95.38%, and an f1-score of 94.05% . This study produced sentiment findings for each aspect of the online SIM service in the Digital Korlantas Polri application where reliability was the aspect that was most frequently raised and received negative sentiment, followed by aspects of efficiency, citizen support, and trust."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Raksaka Indra Alhaqq
"Banyaknya ulasan aplikasi Info BMKG yang belum pernah diolah menyulitkan pengembang aplikasi dalam mengembangkan fitur berdasarkan masukan pengguna. Ulasan pengguna aplikasi terdapat informasi penting yang dapat dijadikan rujukan oleh pengembang untuk meningkatkan kualitas layanan aplikasi. Penelitian ini bertujuan untuk membuat model klasifikasi terbaik terhadap ulasan pengguna aplikasi Info BMKG. Dataset yang digunakan berasal dari ulasan pengguna aplikasi Info BMKG di Google Play Store sebanyak 10.286 data. Klasifikasi ulasan dibagi ke dalam dua label, yaitu label relevansi dan label kategori. Label relevansi terdiri atas kelas relevan dan tidak relevan. Untuk label kategori terbagi empat kelas yaitu bug report, user request, weather information performance (layanan cuaca), dan earthquake information performance (layanan gempa bumi). Algoritme klasifikasi yang digunakan adalah Naïve Bayes, Support Vector Machine (SVM), Logistic Regression, dan Random Forest. Penelitian ini menghasilkan dua model untuk klasifikasi relevansi dan klasifikasi kategori. Hasil pemodelan klasifikasi terbaik untuk relevansi diraih oleh SVM dengan nilai akurasi sebesar 92,61%. Sedangkan untuk klasifikasi kategori, hasil pemodelan terbaik diraih oleh Random Forest dengan nilai akurasi sebesar 87,69%. Kedua model terbaik melalui teknik over-sampling pada dataset dan normalisasi koreksi ejaan pada tahap prapemrosesan. Untuk ekstraksi fitur terbaik pada model klasifikasi relevansi menggunakan unigram dengan TF-IDF dan panjang teks. Sementara pada model klasifikasi kategori hanya menggunakan unigram dengan TF-IDF saja.

A large number of unprocessed Info BMKG app reviews makes it difficult for app developers to develop features based on user input. App user reviews contain important information that can be used as a reference by developers to improve the service quality of the app. This study aims to create the best classification model for user reviews of the Info BMKG app. Dataset used comes from user reviews of the Info BMKG app on the Google Play Store of 10,286 data. Review classification is divided into two labels, namely the relevance label and the category label. The relevance label consists of relevant and irrelevant classes. Category labels are divided into four classes, namely bug reports, user requests, weather information performance (weather services), and earthquake information performance (earthquake services). The classification algorithm used is Naïve Bayes, Support Vector Machine (SVM), Logistic Regression, and Random Forest. This research produces two models for relevance classification and category classification. Best classification modeling results for relevance were achieved by SVM with an accuracy value of 92.61%. For category classification, the best modeling results were achieved by Random Forest with an accuracy value of 87.69%. The two best models are over-sampling techniques on the dataset and normalization of spelling corrections at the pre-processing stage. The best feature extraction in the relevance classification model was carried out with the TF-IDF unigram and text length. Meanwhile, the category classification model only uses the TF-IDF unigram.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library