Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Frauenthal, J.C.
New York: Springer-Verlag, 1980
614.40724 FRA m
Buku Teks SO  Universitas Indonesia Library
cover
Dinda Asrianti
"ABSTRACT
Campak adalah penyakit yang sangat menular yang disebabkan oleh virus campak. Sebuah model matematika penyebaran penyakit campak dengan intervensi isolasi dan dua tahap vaksinasi telah dikonstruksi pada penelitian ini. Model tersebut dikonstruksi menjadi model SVIQR dengan sistem persamaan diferensial biasa berdimensi enam. Analisis matematika terhadap titik-titik keseimbangan beserta stabilitas lokalnya dilakukan secara analitik dan numerik. Bilangan reproduksi dasar juga ditunjukkan sebagai nilai eigen terbesar dari Next-Generation Matrix. Simulasi numerik pada model dilakukan menggunakan berbagai kasus untuk menyediakan pemahaman yang lebih baik mengenai model. Dari simulasi numerik dapat disimpulkan bahwa laju vaksinasi tahap pertama, laju vaksinasi tahap kedua, dan laju diisolasinya individu yang terinfeksi dapat mengurangi penyebaran penyakit campak pada populasi.

ABSTRACT
Measles is a highly contagious diseases caused by a virus. A mathematical model of measles with isolation and two stages of vaccination intervention constructed in this article. The model is constructed as an SVIQR system of sixdimensional ordinary differential equation. Mathematical analysis of the equilibrium points and its local stability is performed, both analytically and numerically. We also show the form of the basic reproduction number as the spectral radius of the Next-Generation matrix. Numerical simulations of the model are done for various scenarios to provide a better understanding of the model. From the numerical simulation, we can conclude that the first step and the second step of vaccination and the isolation can reduce the spread of the disease."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iffatul Mardhiyah
"HIV (Human Immunodeficiency Virus) merupakan virus infeksi berbahaya yang tidak dapat disembuhkan. Penularan infeksi HIV melalui jarum suntik rentan terjadi dalam komunitas pecandu narkoba suntik (Injecting Drug Users / IDU) yang saling berbagi jarum suntik dalam grup ?sahabat?. Penulisan ini membahas perilaku penyebaran infeksi HIV pada komunitas IDU melalui model matematika berdasarkan model klasik epidemik SIR (Susceptibles, Infectious, Recovered). Model menggunakan asumsi bahwa pecandu yang menyadari sudah mengidap AIDS tidak ikut berbagi jarum suntik dalam komunitas IDU. Model penyebaran infeksi HIV pada komunitas IDU memperhatikan kekuatan infeksi dengan mekanisme pertukaran jarum suntik. Untuk menganalisa perilaku penyebaran infeksi HIV pada komunitas IDU, model dianalisa dengan menentukan basic reproduction ratio ( ) dan dua titik kesetimbangan yaitu titik kesetimbangan bebas infeksi dan titik kesetimbangan epidemik. Analisa sistem dinamik dilakukan dengan menganalisa basic reproduction ratio ( ) untuk menentukan kestabilan dari titik kesetimbangan bebas infeksi dengan menggunakan teorema kestabilan global Lyapunov dan kestabilan titik kesetimbangan epidemik dengan teorema kestabilan lokal dan didukung oleh kriteria Bendixon-Dulac. Hasil penelitian menunjukkan bahwa infeksi HIV mewabah pada komunitas IDU jika R⍺ > 1, sedangkan jika R⍺ ≤ 1 maka infeksi HIV tidak mewabah pada komunitas IDU.

Human immunodeficiency Virus (HIV) is a dangerous infection virus that cannot be recovered. The spreading of HIV infection through drug injecting equipment (DIE) is susceptible for Injecting Drug Users (IDU) Community who shared drug injecting equipment for the ?friendship? group. This paper explains the behavior of HIV transmission among community of IDU through by mathematical models based on classical epidemic models SIR (Susceptibles, Infectious, Recovered). Model uses assumption that the users who aware suffered AIDS will not share drug injecting equipment among IDU community. Models for HIV transmission among IDU community notice the mechanism of exchange of a drug injecting equipment. To analyze the behavior of HIV transmission among IDU community, models is going to be analyze by determine the basic reproduction ratio and two equilibriums which are disease-free equilibrium and epidemic equilibrium. Dynamic system analysis can be done by analyze of basic reproduction ratio to determine the stability of disease-free equilibrium by Lyapunov global stable theorem and the stability of epidemic equilibrium by local stable theorem with Bendixon-Dulac criterion. As the results of this paper, Infection of HIV become an epidemic on IDU community if R⍺ > 1, whereas HIV is not an epidemic on IDU community if R⍺ ≤ 1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T32747
UI - Tesis Open  Universitas Indonesia Library