Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Edwin Aldrin
"ABSTRAK
LNG skala kecil merupakan salah satu alternatif pasokan gas untuk pembangkit listrik yang lokasinya tersebar di kepulauan seperti Bangka, Belitung dan Pontianak. LNG yang ditransportasikan dari terminal likuifaksi LNG harus dioptimasi pola pendistribusiannya ke masing-masing lokasi pembangkit. Optimasi dilakukan terhadap faktor biaya yang meliputi biaya pembelian gas, biaya penyewaan kapal, biaya pengiriman gas dan biaya operasional terminal penerima dan regasifikasi LNG. Sebuah model matematis dibuat berdasarkan variabel keputusan dan variabel tak terkendali yang didefinisikan dari parameter-paramater yang mempengaruhi hasil pola logistik. Secara garis besar skenario operasi untuk pendistribusian LNG yang digunakan adalah pengiriman tanpa hub (milk run dan point to point) dan pengiriman dengan hub. Hasil perbandingan menunjukan bahwa biaya logistik skema milk run lebih murah dibandingkan dengan skema yang lain yaitu sebesar 0,85 USD/MMBTU untuk pembangkit listrik MPP Belitung, 0,84 USD/MMBTU untuk MPP Bangka, 0,83 USD/MMBTU untuk MPP Kalbar dan 0,83 USD/MMBTU untuk Peaker Pontianak.

ABSTRACT
Small Scale LNG is an alternative as gas supply to Gas Power Plants that scattered in several islands like Bangka, Belitung and Pontianak. LNG transportation from Liquifaction Terminal to each power plant have to be optimized. Optimation is conducted to achieve cost efficiency. Several Costs that affect the logistic scheme include LNG FOB price, Ship chartered cost, gas transporting cost and operational cost at regasification terminal. A Mathematical model is constructed based decision variable and uncontrollable variable which defined from any parameters that has implication to logistic scheme. Overall operation scenario built on this study are comprised of transporting with hub and transporting without hub (milk run and point to point). The results shown show that logistics costs must run cheaper compared to the others, namely 0.85 USD / MMBTU for MPP Belitung power plant, 0.84 USD / MMBTU for MPP Bangka, 0.83 USD / MMBTU for MPP West Kalimantan and 0 , 83 USD / MMBTU for Pontianak Peakers.
"
2019
T52639
UI - Tesis Membership  Universitas Indonesia Library
cover
Dian Handayani Lulun Lande
"Perencanaan dan pengadaan fasilitas pembangkit listrik berikut fasilitas terminal LNG masih dilakukan terpisah. Dari sudut pandang teori, integrasi sistem pembangkit listrik dengan sistem regasifikasi pada terminal LNG masih belum optimal karena masih terdapat potensi pemanfaatan energi terbuang baik energi panas maupun energi dingin yang merupakan peluang perbaikan untuk meningkatkan efisiensi sistem keseluruhan. Integrasi sistem dapat dilakukan dengan memanfaatkan energi panas pada air pendingin mesin dan pada gas buang dari proses pembangkitan energi listrik, sekaligus memanfaatkan energi dingin dari proses regasifikasi LNG untuk mendinginkan air pendingin mesin. Melalui metode analisis teknis, simulasi rancangan dengan pemanfaatan energi panas dari mesin pembangkit dapat dilakukan pada LNG Vaporizer tipe shell and tube.
Dari hasil simulasi teknis dapat diketahui dengan flow rate LNG sebesar 4 MMSCFD akan menghasilkan daya sebesar 17230 kW dengan efisiensi 35,2%, dimana efisiensi tersebut lebih tinggi apabila dibandingkan dengan efisiensi sistem yang tidak terintegrasi. Dalam analisis ekonomi pada pola pembebanan mesin pembangkit dengan faktor kapasitas 80% dan asumsi harga listrik yang digunakan sebesar cent US$ 12 /kWh, diperoleh nilai IRR 19,7% dimana nilai IRR tersebut lebih besar dari nilai WACC (7,49%) sehingga pengembangan disain integrasi sistem layak untuk dilakukan.

Planning and procurement process of electricity generation facilities and LNG terminal facilities are still carried out separately. From a theoretical point of view, the integration of the power plant system with the regasification system at the LNG terminal is not optimal because there is still potential utilization of wasted energy both heat and cold energy which is an opportunity to improve overall system efficiency. System integration can be done by utilizing heat energy in engine cooling water and exhaust gas from the electricity generation process, while utilizing the cold energy from the LNG regasification process to decrease temperature of engine cooling water. Through a technical analysis method, design simulation with the utilization of heat energy from the gas engine can be carried out on the shell and tube type LNG Vaporizer.
The results of the technical simulation can be seen that the LNG flow rate of 4 MMSCFD will produce power of 17230 kW with an efficiency of 35.2%, where the efficiency is higher compared to the efficiency of a standalone system. In the economic analysis, base on loading profile of gas engine with a capacity factor of 80% and the assumption of the electricity price at cent US $ 12 / kWh, an IRR value of 19.7% was obtained where the IRR value was greater than the WACC value (7.49%), the result shows that development of system integration design is feasible.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52637
UI - Tesis Membership  Universitas Indonesia Library
cover
Paviliyanti Juwita
"[ABSTRAK
Tulisan ini membahas ruang lingkup tahapan pemisahan (distilasi), sebagai
tahapan yang penting dalam pemisahan komponen agar mendapatkan komponen
yang murni. Dalam tahapan distilasi ini, terjadi perbedaan yang dipengaruhi oleh
tekanan, temperatur, konsentrasi, dan kecepatan. Penelitian ini bertujuan untuk
menganalisa nilai kehilangan eksergi di setiap tray pada konfigurasi tertentu dari
setiap pemisahan multikomponen. Komponen yang dipisahkan dari kilang LNG
berupa metana, etana, propana, n-butana, i-butana dan i-pentana. Data eksperimen
khususnya komposisi untuk komponen yang dipisahkan tersebut diperoleh dari
penelitian sebelumnya. Metode perhitungan yang digunakan mengacu pada
penelitian sebelumnya. Konfigurasi pemisahan komponen berdasarkan titik didih
menghasilkan exergy loss sebesar 9.220,57 MW. Utility cost yang dibutuhkan
untuk kondensor sebesar US$ 6.892.639 dan untuk reboiler sebesar US$ 11.054.
Konfigurasi pemisahan komponen berdasarkan fraksi terbesar menghasilkan
exergy loss sebesar 12.582,29 MW. Utility cost yang dibutuhkan untuk kondensor
sebesar US$ 6.898.806 dan untuk reboiler sebesar US$ 19.382. Konfigurasi
pemisahan komponen berdasarkan equimolar menghasilkan exergy loss sebesar
23.012,08 MW. Utility cost yang dibutuhkan untuk kondensor sebesar US$
6.900.682 dan untuk reboiler sebesar US$ 21.939.Semakin kecil nilai exergy loss
akan semakin kecil pula utility cost yang dibutuhkan.

ABSTRACT
This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.;This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too., This research discusses the scope of phase separation (distillation), as an
important stage in the separation of components in order to obtain a pure
component. In this distillation stage, there is a difference which is affected by
pressure, temperature, concentration, and speed. The main goals of research on the
simulation of distillation is to analyze exergy loss in each configuration for
multicomponent separation. Component will be separated from LNG Plant are
methane, ethane, propane, n-butane, i-butane, and i-pentane. Experiment datafor
composition of the separated components written by previous researcher. The
method is arranged by previous researcher. Configuration component separation
by boiling point has produced exergy loss of 9.220,57 MW. Utility cost required
for the condenser of US$ 6.892.639 and for the reboiler of US$ 11.054.
Configuration component separation by the largest fraction has produced exergy
loss of 12.582,29 MW. Utility cost required for the condenser of US$ 6.898.806
and for the reboiler of US$ 19.382. Configuration component separation by
equimolar has produced exergy loss of 23.012,08 MW. Utility cost required for
the condenser of US$ 6.900.682 and for the reboiler of US$ 21,939. If the value
of exergy loss is small, It will be needed utility cost that small too.]"
2015
T43152
UI - Tesis Membership  Universitas Indonesia Library
cover
Picunang, Badaruddin Andi
"Kebijakan diversifikasi energi menjadi faktor penting dalam upaya pemanfaatan bahan bakar gas sebagai pengganti bahan bakar minyak. Dengan demikian upaya optimasi penentuan harga gas perlu dilakukan khususnya di wilayah JADETABEK. Pada penelitian ini, upaya optimasi dilakukan dengan pendekatan simulasi Monte Carlo dalam penentuan harga gas. Hasil dari Optimasi harga dengan pendekatan simulasi montecarlo ini diharapkan dapat menjadi referensi tambahan dalam upaya konversi bahan bakar minyak ke bahan bakar gas sehingga didapatkan harga bahan bakar gas yang optimal.

Energy diversification policy is an important factor in efforts to use natural gas instead of fuel oil. Accordingly gas pricing optimization efforts need to be done, especially in the region JADETABEK. In this study, the optimization is conducted by the Monte Carlo simulation approach in determining the price of gas. The results from the price Optimization of Monte Carlo simulation approach is expected to be an additional reference in an effort to fuel conversion of fuel to gas fuel so that the fuel price obtained optimum gas."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45501
UI - Tesis Membership  Universitas Indonesia Library
cover
Mokhammad Nuh
"ABSTRAK
International Labour Organization (ILO) telah menerbitkan standar praktis pencegahan kecelakaan besar dalam industri dimana telah diadopsi oleh pemerintah dengan peraturan No.: Kep-84/PPK/X/2012 tentang Tata Cara Penyusunan Dokumen Pengendalian Bahaya Besar dan Menengah. Kilang LPG sebagai salah satu instalasi yang memiliki potensi bahaya besar (major hazard) harus dilengkapi dengan penyusunan Dokumen Pengendalian Potensi Bahaya Besar untuk memastikan aspek K3 terpenuhi. Dalam penyusunan dokumen ini akan dilakukan proses verifikasi lapangan oleh inspektur. Dalam pelaksanaan proses verifikasi lapangan maka perlu dilakukan terlebih dahulu kajian terhadap penilaian risiko yang akan dihadapi oleh inspektur dalam proses pemeriksaan perlatan utama dan pendukung pada kilang LPG. Hasil penilaian risiko yang dilakukan dengan menggunakan teknik matriks konsekuensi dan probabilitas (risk index) sesuai dengan ISO 31010:2009 terdapat 12 tabel penilaian risiko dengan 82 potensi risiko K3. Dari 12 kegiatan pemeriksaan peralatan utama dan pendukung terdapat peringkat risiko (Risk Rating) Tinggi sebanyak 9 jenis kegiatan pemeriksaan atau sebesar 75%, dan sebanyak 3 jenis kegiatan berperingkat Menengah atau sebesar 25%. Kegiatan yang memiliki peringkat risiko Tinggi adalah pemeriksaan pada obyek/peralatan yang memiliki risiko kebakaran atau ledakan karena gas atau kondensat. Hasil upaya pengendalian risiko menunjukkan bahwa seluruh risiko sebanyak 82 potensi risiko dapat diturunkan peringkat risikonya menjadi risiko yang dapat diterima (Accepted) yaitu Rendah dan Sangat Rendah. Metode pengendalian risiko dilakukan dengan pengendalian adminstratif dan penggunaan Alat Pelindung Diri (APD).

ABSTRACT
International Labour Organization (ILO) has published a Code of Practice on Prevention of Major Industrial Accidents which has been adopted by the Government of Republic Indonesia regulation No.: Kep-84/PPK/X/2012 on Procedures for Document Preparation to Major and Medium Hazard Control. LPG plant is one of the installation that has a potential for major hazard and should be arranged the Document of Major Hazard Controll to ensure safety aspects are achieved. In preparing this document, it must be verified by the independent inspectors. Along of the verification process, the inspector will be exposed to high risk condition. The results of the risk assessment carried out by using a risk index technique in accordance with ISO / IEC 31010 there were 12 tables of risk assesment result and with 82 of the potential risk of K3. There are 9 tables (75%) of inspection activities that has High Risk Rating and 3 tables (25%) that has Medium Risk Rating. The inspection activities that have a high risk rating is the examination of the object / equipment that has a risk of fire or explosion due to gas or condensate. After risk controlled has applied, the final risk rating for 82 potentail risk to be accepted ( Low and Very Low Risk). Risk rating has been reduced by using the methods of administrative control and Personal Protective Equipment (PPE).
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45074
UI - Tesis Membership  Universitas Indonesia Library
cover
Raden Reza Mahendra
"ABSTRAK
Lapangan LBK adalah salah satu lapangan gas milik PT. PEP yang telah
mencapai usia mature sehingga jumlah produksinya diprediksi akan mengalami
penurunan. Oleh karena itu untuk dapat meningkatkan dan tetap mempertahankan
laju produksinya maka sebuah penambahan fasilitas atau upgrading diperlukan.
Produksi eksisting dari Lapangan LBK adalah ±35-40 MMSCFD dan diprediksi
akan terus menurun setiap tahunnya akibat sudah turunnya tekanan pada sumursumurnya.
Setelah dilakukan penambahan fasilitas diharapkan produksi Lapangan
LBK akan meningkat menjadi ±60 MMSCFD pada 4 tahun pertama. Dalam tesis
ini dilakukan evaluasi keekonomian terhadap penambahan fasilitas kompresor gas
beserta peralatan pendukung pada Lapangan LBK dengan cara membandingkan 3
opsi yang bisa diambil yaitu opsi tidak melakukan apapun, opsi melakukan skema
kontrak sewa dan opsi melakukan skema pembelian langsung. Perbandingan kas
masuk bersih kumulatif opsi ketiga sebesar US$ 43.012.124,98 yang lebih besar
daripada opsi kedua sebesar US$ 42.214.881,25 menjadi pertimbangan untuk
memilih opsi ketiga sebagai pilihan. Hasil evaluasi keekonomian untuk opsi
ketiga juga didapatkan NPV sebesar US$ 20.241.226,27, IRR sebesar 35,02% dan
payback period sebesar 2,34 tahun. Berdasarkan analisa sensitivitas terhadap opsi
ketiga dapat diketahui bahwa perubahan harga jual gas sangat berpengaruh sekali
terhadap nilai Kas Masuk Bersih Kumulatif, NPV, IRR dan payback period.
Sedangkan untuk perubahan biaya OPEX pengaruhnya tidak terlalu banyak.

ABSTRACT
LBK Field is one of gas field owned by PT. PEP that has reached mature age so
that the amount of production is predicted to decrease. Therefore, in order to
increase and maintain the production rate, a facility upgrading is required.
Existing production from LBK Field is ± 35-40 MMSCFD and is predicted to
decreasing every year due to the decreasing of well pressure. After upgrading the
facility, LBK Field production rate expected to increase to ± 60 MMSCFD in the
first 4 years.
In this thesis, the economic evaluation of the upgrading of gas compressor
facilities and its supporting equipment at LBK Field are done by comparing the 3
options that can be taken which are the option of not doing anything, the option of
scheme rental contract, and the option of doing direct purchase scheme. The third
cumulative third quarter net cash option of US $ 43,012,124.98 which is greater
than the second option of US $ 42,214,881.25 is considered to choose the third
option as a recommended option. The economic evaluation for the third option
also obtain NPV of US$ 20.241.226,27., IRR of 35,02% and payback period of
2,34 years.
Based on the sensitivity analysis of the third option, it can be seen that the change
in gas selling price is very influential to the value of Cumulatice Net Cash Flow,
NPV, IRR and payback period. As for the changes in OPEX cost the influence is
not too much."
2017
T47777
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwitya Nur Fadilah
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53468
UI - Tesis Membership  Universitas Indonesia Library
cover
Wildan Baina Iedai El Islami
"Pengembangan terhadap energi hidrogen tengah tumbuh pesat belakangan ini karena sumber energi hijau menjadi jauh lebih penting di berbagai industri dan mampu menggantikan natural gas dimasa mendatang. Negara - negara di berbagai belahan dunia telah mulai mengembangkan energi hidrogen secara masif seperti Jepang, Korea, Italia, Spanyol, Arab Saudi, Cina, Turki dan Maroko dengan metoda elektrolisis dari sumber energi terbarukan dengan biaya produksi yang cukup kompetitif. Biaya produksi hidrogen yang telah dikembangkan dengan metoda elektrolisis ini di Turki USD 3,1 $/kgH2, Korea Selatan USD 7,72 $/kgH2, Italy 6,9 €/kgH2, Arab Saudi 43,1 $/kgH2 dan Maroko 4,99 $/kgH2. Oleh karena itu, diperlukan penelitian pengembangan produksi green hydrogen di Indonesia dengan metoda elektrolisis dari floating solar photovoltaic di Waduk Cirata. Metoda penelitian dimulai dengan pemilihan teknologi green hydrogen plant dengan membandingkan spesifikasi elektroliser yang tersedia dipasaran melalui skema “scoring”. Selanjutnya dilakukan analisa keekonomian melalui tiga skema excess power yaitu 20%, 30% dan 40% dari energi listrik yang tersedia pada floating solar photovoltaic. Analisa keekonomian dilakukan dengan menghitung nilai Net Present Value (NPV), Internal Rate Return (IRR) dan Payback Period. Teknologi yang dipilih berdasarkan hasil scoring adalah PEM Electroliser dengan nilai scoring 8,32. Analisa keekonomian pengembangan green hydrogen plant yang paling optimum adalah skema excess power 40% dengan nilai NPV sebesar USD 74.152.302, IRR 18,92% dan Payback Period selama 4,76 tahun (4 tahun 10 bulan).

The development of hydrogen energy is growing rapidly in recent years as green energy sources have become much more important in various industries and can replace natural gas in the future. Countries in various parts of the world have started to develop hydrogen energy massively such as Japan, Korea, Italy, Spain, Saudi Arabia, China, Turkey and Morocco by using electrolysis method to produce hydrogen from renewable energy sources with competitive production costs. The cost of producing hydrogen which has been developed by the electrolysis method in Turkey USD 3.1 $/kgH2, South Korea USD 7.72 $/kgH2, Italy 6.9 €/kgH2, Saudi Arabia 43.1 $/kgH2 and Morocco 4.99 $/ kgH2. Therefore, it is necessary to research the development of green hydrogen production in Indonesia using the electrolysis method from floating solar photovoltaic in the Cirata Reservoir. The research method was carried out by selecting green hydrogen plant technology by comparing the specifications of the electrolyzer available in the market through a "scoring" scheme. Furthermore, an economic analysis is carried out through three excess power schemes, namely 20%, 30% and 40% of the electrical energy available in floating solar photovoltaic. Economic analysis is done by calculating the value of Net Present Value (NPV), Internal Rate Return (IRR) and Payback Period. The technology chosen based on the scoring results is PEM Electroliser with a scoring value of 8.32. The most optimum economic analysis of green hydrogen plant development is the 40% excess power scheme with an NPV value of USD 74,152,302, IRR 18.92% and a Payback Period of 4.76 years (4 years 10 months)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Leksono Bangun
"Perkembangan Perkeretaapian Indonesia yang mengacu kepada Rencana Induk Perkeretaapian Nasional (RIPNAS) di Indonesia sampai dengan tahun 2030 sudah menargetkan proporsi elektrifikasi sampai dengan 90%. Namun pada saat ini sebagian besar lokomotif masih berbasis bahan bakar solar (diesel). Dengan seiringnya dua tuntutan yaitu pengurangan ketergantungan akan bahan bakar fosil dan penurunan emisi CO2 < 2oC, maka diperlukan skenario perencanaan untuk penerapan bahan bakar yang ramah lingkungan dari sumber Energi Baru dan Terbarukan (EBT) menjadi faktor pendorong yang kuat. Penelitian ini berfokus pada proyeksi kebutuhan bahan bakar cakupan Jalur Kereta Api seluruh Indonesia menggunakan perangkat lunak LEAP dengan mensimulasikan beberapa skenario yaitu BaU, RIPNAS, Green Diesel, dan Hidrogen. Adapun hasil penelitian ini menunjukkan kebutuhan energi primer dari BaU, RIPNAS, Green Diesel dan Hidrogen berturut-turut yaitu sebesar 1,17, 405, 32, 405,2 dan 405,5 juta TOE pada tahun 2050, Sedangkan Bauran untuk energi fosil dan energi terbarukan yaitu pada Skenario Hidrogen yang memberikan prakiraan bauran EBT yang paling besar yaitu sebesar 97,47%. Kemudian prakiraan untuk emisi CO2 memberikan hasil yaitu Skenario RIPNAS 39,4 Juta Ton CO2 e pada tahun 2050, dan menurun menjadi 25,2 Juta Ton CO2e bila dibandingkan dengan Skenario Green Diesel dan Hidrogen. Penelitian ini memberikan gambaran kelayakan ekonomi yang memungkinkan hanya pada skenario RIPNAS dimana IRR, NPV dan PBP sebesar 15%, 1.049,42 triliun rupiah, dan 16,57 tahun. Diharapkan dengan beberapa hasil simulasi pada penelitian ini, kemajuan teknologi untuk mensubstitusi energi fosil dapat ditingkatkan sehingga layak secara ekonomi, operaional dan emisi CO2.

The development of Indonesian railways referring to the National Railway Master Plan (RIPNAS) in Indonesia until 2030 has targeted the proportion of electrification up to 90%. But currently most locomotives are still based on diesel fuel. Along with two demands, namely reduced dependence on fossil fuels and reduction of CO2 < 2oC emissions, a planning scenario is required for the application of environmentally friendly fuels from Renewable Energy (EBT) sources that are strong driving factors. This research focuses on the projection of final fuel energy demands with railway coverage throughout Indonesia using LEAP software by using forecasting function for several scenarios. There are BaU, RIPNAS, Green Diesel, and Hydrogen scenarios. The results of this study showed the total final energy demands of BaU, RIPNAS, Green Diesel and Hydrogen respectively amounted to 1.214 million TOE, 406.050 million TOE, 405.782 million TOE and 406.128 million TOE by 2050, Then the forecast for CO2 emissions gave successive results for the BaU, RIPNAS, Green Diesel and Hydrogen scenarios were respectively 2.4 Million Tons of CO2e, 41.4 Million Tons of CO2e, 33.3 Million Tons of CO2e and 33.3 Million Tons of CO2e. This study provides an overview of economic feasibility that is possible only in RIPNAS scenario where IRR, NPV and PBP are 15%, 1,049.42 trillion Rupiah, and 16.57 years. It is expected that with some of the forecasts in this study, technological advances to substitute fossil energy can be improved so that it is economically viable, operational and has the potential to reduce CO2 emissions"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Brajaka Kusuma
"Pertumbuhan infrastruktur gas kota oleh badan usaha saat ini dianggap lambat dan tidak memenuhi harapan pemerintah. Lambatnya pembangunan infrastruktur disebabkan oleh rendahnya profitabilitas bisnis. Pemerintah berkomitmen untuk mendanai pengembangan infrastruktur jaringan gas kota setiap tahun, tetapi tetap tidak dapat membantu operator untuk menutupi biaya operasional. Solusi yang ditawarkan untuk mengoptimalkan alokasi gas kota adalah dengan mengevaluasi dampak ekonomi dari infrastruktur gas kota di area X, Y dan Z dengan metode rekayasa nilai. Studi ini berfokus pada pemilihan alternatif skenario untuk menentukan skema pemanfaatan gas kota yang optimal. Hasilnya menunjukkan arus kas gas kota dari daerah yang ada X, Y dan Z adalah minus. Area-area tersebut akan menghasilkan keuntungan dan dapat menutupi biaya operasional jika ada pengembangan pelanggan kecil dengan IRR>12%. Pelanggan rumah tangga tidak disarankan untuk mencapai skala ekonomi gas kota, kecuali dana pemerintah dan tingginya volume penggunaan gas.

The growth of city gas infrastructure by business entities is currently considered slow and does not meet government expectations. The slow development of infrastructure is due to the low profitability of the business. The government is committed to funding the development of the citys gas network infrastructure every year, but it remains can not help operators to cover the operational costs. The solution is offered to optimize the allocation of city gas is by evaluating the economic impact of the city gas infrastructure in area X, Y and Z with value engineering method. This study focuses on examining scenario alternatives to determine an optimum city gas utilization scheme. The results showed the cashflow of city gas from the existing area X, Y and Z are minuses. Those areas will make profits and can cover the operational costs if there are the development of small customers with IRR>12%. The household customers are not recommended to achieve the economic scale of city gas, except the governments funding and the high volume of gas usage."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>