Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Heru Suhartanto
Jakarta: Elex Media Komputindo, 1993
004.015 1 HER k
Buku Teks SO  Universitas Indonesia Library
cover
Heru Suhartanto
Artikel Jurnal  Universitas Indonesia Library
cover
Heru Suhartanto
"Penyunting kata elektronis telah banyak beredar sejak munculnya perangkat komputer di masyarakal. Keberadaanya sangat membantu pemakai (user) dalam merancang dan mem prod uksi sualu dokumcn. Sayangnya kebanyakan pcnyunting icrsebut clirancang kluisus unluk bahasa asing sehingga pemakaiannya dalam penyiapan dokumcn berbahasa Indonesia kurang mcmbantu. Untuk menmupi kekurangan tersebul beberapa piliak lelah dan sedang mengembangkan perangkal lunak pendukung yang bisa disisipkan pada penyunting yang sudah ada. Perangkat pendukung tersebut anlara lain adalab Kamus Besar Bahasa Indonesia (KBII) elektronik [6],fasilitas pemenggalan Kata Indonesia [1), fasililas remeriksa Ujaan[ 3]. dan fasilitas Tesaurus [10]. Dalam makalah ini penulis akan menjelaskan prototipe yang tengah dikembangkan sebagai pemeriksa adalah bahsa Indonesia. pemeriksa ini diharapkan mampu memeriksa validitas sualu kalimat bahasa Indonesia sesuai dengan Tata bahasa Baku bahasa Indonesia."
1995
LESA-25-Jan1995-106
Artikel Jurnal  Universitas Indonesia Library
cover
Heru Suhartanto
Depok: UI-Press, 2008
PGB 0020
UI - Pidato  Universitas Indonesia Library
cover
Heru Suhartanto
"Banyak model fenomena alam, aplikasi engineering, dan industri membutuhkan Sumber Daya Komputasi (SDK) yang tinggi untuk memroses data sehingga menghasilkan informasi yang dibutuhkan. Teknologi komputasi tingkat tinggi pun diperkenalkan banyak peneliti dengan diciptakannya Supercomputer beserta Operating System dan perangkatbantu (tools) pengembangnya seperti kompilator dan pustaka (library). Namun, mahalnya investasi SDK ini baik dalam pengadaan maupun pemeliharaannya memberatkan banyak pihak, sehingga diperlukan alternatif SDK yang tetap berkinerja tinggi tetapi murah. Untuk mengatasi keterbatasan tersebut, para peneliti telah membuat konsep alternatif, yakni konsep komputasi parallel pada jaringan komputer yang sudah ada. Banyak perangkatbantu diciptakan guna mengembangkan aplikasi dalam sistem SDK yang memanfaatkan mesin atau komputer dalam suatu jaringan, dimana masing-masing komputer ini berperan sebagai pemroses layaknya pemroses dalam sistem super computer.
Tulisan ini akan mengkaji beberapa perangkat bantu yang cukup dominan di kalangan pemakai, yakni Parallel Virtual Machine (PVM), Message Passing Interface (MPI), Java Remote Method Invocation (RMI), serta Java Common Object Request Broker Architecture (CORBA) dan menyajikan eksperimen untuk mengetahui perangkatbantu mana yang paling cocok sehingga dapat pembantu calon user dalam memilihnya. Percobaan dilakukan pada SDK berbasis jaringan komputer pribadi (Personal Computer) dan menghasilkan percepatan yang cukup berarti. Dari keempat perangkatbantu tersebut masing-masing teridentifikasi cocok untuk pengembangan pada kondisi tertentu.

A Study on Parallel Computation Tools on Networked PCs. Many models for natural phenomena, engineering applications and industries need powerfull computing resources to solve their problems. High Performance Computing resources were introduced by many researchers. This comes in the form of Supercomputers and with operating systems and tools for development such as parallel compiler and its library. However, these resources are expensive for the investation and maintenance, hence people need some alternatives. Many people then introduced parallel distributed computing by using available computing resource such as PCs. Each of these PCs is treated as a processors, hence the cluster of the PC behaves as Multiprocessors Computer. Many tools are developed for such purposes.
This paper studies the peformance of the currently popular tools such as Parallel Virta\ual Machine (PVM), Message Passing Interface (MPI), Java Remote Method Invocation (RMI) and Java Common Object Request Broker Architecture (CORBA). Some experiments were conducted on a cluster of PCs, the results show significant speed up. Each of those tools are identified suitable for a certain implementation and programming purposes."
Depok: Lembaga Penelitian Universitas Indonesia, 2006
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Heru Suhartanto
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1985
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heru Suhartanto
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Heru Suhartanto
"ABSTRACT
One of the processes requiring HPC environments is Molecular Dynamics ( MD ) . In tropical countries, the MD process is very important in the preparation of virtual screening experiments for anti-malaria search. Previous works on the virtual screening project for anti-malaria search conducted by WISDOM project uses grid infrastructure with 1,700 CPUs of various infrastructure provided in 15 countries [13]. In silico anti malaria compounds searching from Indonesian medical plants using virtual screening methods are urgently required. This can reduce the cost and time required compared to the direct searching or examining each compound by in vitro and in vivo which will spend a lot of time and expense . However, the use of thousands of processors is difficult for the researchers with limited resources in developing countries such as Indonesia.
Our of previous studies using MD with GROMACS shows the improvement of the simulation time using Cluster. But that is not the case for some of our previous works with AMBER on Cluster where we did not obtain significant speed up. However, our previous works running GROMACS on GPUs provided significant speed up about 12 times faster than that run on Cluster. In this study , we build a GPU -based computing environment and have some MD simulation with AMBER.
We used several computing environments such as cluster with 16 cores , GPU Geforce GTX 465 , GTX 470 , GTX 560 , GTX 680 , and GTX 780 . In addition to PfENR ( Plasmodium falciparum Enoyl acyl Carrier Protein Reductase ) enzyme , as benchmark we also conducted MD experiments on Myoglobin protein , Dihydrofolate reductase (DHFR) protein, and Ras - Raf protein . All experimental results showed that the slowest MD processes occurred on Cluster, followed in increasing order by GTX 560, GTX 465, GTX 470, GTX 680 and GTX 780. While the GPU speed up relative to cluster is about 24 , 26 , 32 , 24 , 77 and 101, respectively. "
2014
MK-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Heru Suhartanto
"ABSTRACT
Molecular Dynamics (MD) is one of processes that requires High Performance Computing
environments to complete its jobs. In the preparation of virtual screening experiments, MD is one of
the important processes particularly for tropical countries in searching for anti-Malaria drugs. The
search for anti-Malaria has previously conducted, for example by WISDOM project utilizing 1,700
CPUS. This computing infrastructure will be one of the limitation for country like Indonesia that also
needs in silico anti malaria compounds searching from the country medical plants. Thus finding
suitable and affordable computing environment is very important. Our previous works showed that our
dedicated Cluster computing power with 16 cores performance better than those using fewer cores,
however the GPU GTX family computing power is much better.
In this study, we investigate further our previous experiment in finding more suitable computing
environment on much better hardware specification of non dedicated Cluster computing and GPU
Tesla. We used two computing environments, the first one is Barrine HPC Cluster of The University of
Queensland which has 384 compute nodes with 3144 computing cores. The second one is Delta Future
Grid GPU Cluster which has 16 computing nodes with 192 computing cores, each nodes equipped
with 2 NVIDIA Tesla C2070 GPU (448 cores). The results show that running the experiment on a
dedicated computing power is much better than that on non dedicated ones, and the GPU performance
is still much better than that of Cluster."
2015
MK-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2   >>