Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160491 dokumen yang sesuai dengan query
cover
Firdausi Alif Rahman
"Magnesium (Mg) dan paduannya telah dieksplorasi secara ekstensif sebagai bahan implan biodegradable untuk aplikasi ortopedi. Namun, ketahanan korosi paduan magnesium masih tergolong rendah. Laju korosi yang tinggi menyebabkan proses degradasi yang terlalu cepat dalam lingkungan tubuh dan dapat melemahkan sifat mekanik material sebelum proses pemulihan selesai. Solusi paling efektif untuk mengatasi kekurangan tersebut adalah dengan melakukan pelapisan pada permukaannya. Metode pelapisan yang mutakhir pada magnesium adalah Plasma Electrolytic Oxidation (PEO). Karakteristik coating hasil PEO sangat bergantung pada parameter listrik dan waktu yang digunakan. Dalam penelitian ini, PEO dilakukan pada substrat AZ31B di dalam elektrolit 0,5 M Na3PO4 dengan variasi rapat arus 500, 700, dan 900 A.m-2 selama 3 menit, sedangkan variasi waktu dilakukan pada rapat arus konstan 300 A.m-2 selama 5, 10, dan 15 menit. Berdasarkan hasil analisis fasa XRD, terdapat fasa kristalin MgO dan Mg3(PO4)2 pada semua coating. Hasil tersebut dikonfirmasi oleh hasil analisis EDS. Penebalan coating terjadi dengan penambahan rapat arus dan waktu. Efisiensi proses PEO lebih dipengaruhi oleh waktu daripada rapat arus. Rapat arus yang tinggi cenderung menghasilkan coating dengan porositas lebih tinggi (7-25%) dibandingkan coating pada arus rendah (2-13%). Oleh sebab itu, hasil uji mekanik dan korosi menunjukkan coating yang terbentuk pada rapat arus rendah memiliki nilai kekerasan dan ketahanan korosi yang lebih baik dibandingkan coating yang terbentuk pada rapat arus tinggi.

Magnesium (Mg) and its alloys have been extensively explored as biodegradable implant materials for orthopedic applications. However, the corrosion resistance of magnesium alloys is still relatively low. The high corrosion rate causes the degradation process to be too rapid in the body environment and can weaken the material's mechanical properties before the recovery process is complete. The most effective solution to overcome these shortcomings is to perform a coating on the surface. The latest coating method on magnesium is Plasma Electrolytic Oxidation (PEO). The characteristics of the PEO coating are highly dependent on the electrical parameters and the time used. In this study, PEO was carried out on AZ31B substrate in 0.5 M Na3PO4 electrolyte with variations in current density of 500, 700, and 900 A.m-2 for 3 minutes, while time variations were carried out at a constant current density of 300 A.m-2 for 5, 10, and 15 minutes. Based on the results of XRD phase analysis, there are crystalline phases of MgO and Mg3(PO4)2 in all coatings. The results of the EDS analysis confirmed these results. Coating thickening occurs with the addition of current density and time. The efficiency of the PEO process is more influenced by time than flow density. High current densities tend to produce coatings with higher porosity (7-25%) than coatings at low currents (2-13%). Therefore, the results of mechanical and corrosion tests show that coatings formed at low current densities have better hardness and corrosion resistance than coatings formed at high current densities."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafi Alif Fadilla
"Logam Magnesium (Mg) dan paduannya telah menjadi salah satu fokus menarik di bidang material dikarenakan rasio kekuatan terhadap berat yang tinggi, mudah dibentuk, dan sifat mekanik yang dapat dikendalikan. Namun, reaktivitas permukaan yang tinggi dari paduan Mg menyebabkan degradasi yang cepat dan evolusi gas yang kuat. Tentunya hal ini menandakan ketahanan korosi paduan Mg masih kurang. Metode praktis untuk mengurangi laju korosi Mg adalah dengan metode pelapisan permukaan. Metode mutakhir untuk melapisi permukaan logam Mg adalah plasma electrolytic oxidation (PEO). PEO merupakan metode elektrokimia untuk menumbuhkan lapisan oksida keramik dengan memanfaatkan eksitasi plasma pada permukaan logam. Karakteristik dan komposisi lapisan oksida yang dihasilkan tergantung pada jenis larutan yang digunakan. Pada penelitian ini, coating oksida ditumbuhkan diatas paduan magnesium AZ31B dengan metode PEO di dalam campuran larutan sodium fosfat, sodium hidroksida, dan sodium karbonat. Proses PEO dilakukan pada arus DC konstan 800 A/m2 pada suhu 30°C. Analisis XRD menunjukkan fasa kristal yang terbentuk pada coating adalah Mg3(PO4)2 serta MgO. Hasil observasi morfologi dan cross section coating menunjukkan morfologi yang seragam pada tiap sampel yaitu terdapat crack dan pori. Nilai kekerasan dan ketebalan coating tinggi diperoleh di dalam elektrolit dengan komposisi Na3PO4:NaOH = 9:1. Kehadiran anion hidroksida di dalam larutan meningkatkan nilai kekerasan coating. Penambahan anion karbonat di dalam larutan cenderung menambah populasi pori di dalam coating. Ketahanan korosi terbaik diperoleh pada coating yang ditumbuhkan di larutan Na3PO4:NaOH:Na2CO3 dengan rasio volume 8:1:1, yaitu nilai arus korosinya 2 orde lebih rendah dibandingkan dengan substrat. Penambahan hidroksida dan karbonat di dalam larutan berkontribusi dalam meningkatkan ketahanan korosi coating namun volume rasionya harus dibatasi sebesar 10%.

Magnesium (Mg) and its alloys have become an attractive focus in the material field due to their high strength-to-weight ratio, malleability, and controllable mechanical properties. However, the high surface reactivity of Mg alloys causes rapid degradation and strong gas evolution. Of course this indicates that the corrosion resistance of Mg alloys is still lacking. A practical method to reduce the corrosion rate of Mg is by surface coating method. The latest method for coating Mg metal surfaces is plasma electrolytic oxidation (PEO). PEO is an electrochemical method for growing a ceramic oxide layer by utilizing plasma excitation on a metal surface. The characteristics and composition of the resulting oxide layer depend on the type of solution used. In this study, the oxide coating was grown on magnesium alloy AZ31B by the PEO method in a mixture of sodium phosphate, sodium hydroxide, and sodium carbonate solution. The PEO process was carried out at a constant DC current of 800 A/m2 at a temperature of 30°C. XRD analysis showed that the crystalline phases formed on the coating were Mg3(PO4)2 and MgO. The results of morphological observations and cross section coatings showed a uniform morphology in each sample, namely there were cracks and pores. High hardness and coating thickness values were obtained in the electrolyte with the composition Na3PO4:NaOH = 9:1. The presence of hydroxide anions in the solution increases the hardness of the coating. The addition of carbonate anions in the solution tends to increase the pore population in the coating. The best corrosion resistance was obtained from coatings grown in Na3PO4:NaOH:Na2CO3 solution with a volume ratio of 8:1:1, that is, the corrosion current value was 2 orders lower than the substrate. The addition of hydroxides and carbonates in the solution contributes to increasing the corrosion resistance of the coating but the volume ratio should be limited to 10%. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zikri Desriano Putra
"Plasma electrolytic oxidation (PEO) merupakan metode rekayasa permukaan logam untuk menghasilkan lapisan oksida yang keras dan tahan korosi. Sifat lapisan oksida yang dihasilkan bergantung pada jenis substrat dan komposisi larutan yang digunakan. Dalam penelitian ini, PEO dilakukan pada substrat AZ31B pada kondisi rapat arus tetap 800 A/m2 dan suhu 30°C. Larutan terdiri atas campuran garam basa dan etanol. Larutan A terdiri atas campuran 0,5 M Na3PO4 dan etanol dengan komposisi 9:1, larutan B campuran Na3PO4, NaOH dan Na2CO3 dengan komposisi 8:1:1, larutan C, D, dan E campuran Na3PO4, NaOH, Na2CO3, dan etanol dengan komposisi 7:1:1:1, 6:1:2:1, dan 6:2:1:1. Morfologi dan komposisi lapisan oksida diamati dengan scanning electron microscope dan energy dispersive spectroscopy (SEM – EDS). Komposisi kristal dianalisis dengan x-ray diffraction (XRD). Nilai kekerasan mekanik diuji dengan mesin microVickers Hardness. Perilaku korosi sampel diuji dengan metode electrochemical impedance spectroscopy (EIS) dan potentiodynamic polarization (PDP). Etanol di dalam larutan tidak mempengaruhi morfologi dan komposisi coating. Semua coating memiliki kandungan fasa kristal Mg3(PO4)2 pada puncak 29° hingga 35°. Nilai kekerasan coating yang terbentuk di larutan A, B, C, D, dan E adalah 451,8; 388; 237; 156,8; 158,4 HV. Nilai kekerasan yang rendah pada coating C, D, dan E disebabkan oleh rendahnya konsentrasi Na3PO4 yang menurunkan populasi plasma selama proses coating. Selain itu, kehadiran ion karbonat di dalam larutan mentriger peningkatan pori di dalam coating. Hasil uji polarisasi menunjukkan peningkatan ketahanan korosi dua orde dibanding substrat. Penambahan etanol ke dalam larutan cenderung menurunkan sedikit ketahanan korosi coating.

Plasma Electrolytic Oxidation (PEO) is a method of engineering metal surface treatment to produce a hard and corrosion-resistant oxide layer. The result properties of oxide layer depend on type of substrate and composition solution was used. PEO process is carried out a constant current 800 A/m2 at temperature 30℃. The solution composed of mixture alkaline salts and ethanol. Solution A mixture of 0,5 M Na3PO4 and ethanol with composition of 9:1, solution B a mixture Na3PO4, NaOH and Na2CO3 with composition of 8:1:1, solution C, D, and E a mixture of Na3PO4, NaOH and Na2CO3 with ethanol with composition of 7:1:1:1; 6:1:2:1; and 6:2:1:1. Morphology and composition of the oxide layer were observed by scanning electron microscope and energy dispersive spectroscopy (SEM – EDS). The crystal composition was analyzed by x-ray diffraction (XRD). The value of mechanical hardness was tested with a microVickers Hardness machine. The corrosion behavior of the samples was tested by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods. The presence of ethanol in the solution didn’t affect morphology and composition of coating. All coatings contain Mg3(PO4)2 crystal phase at peak 29° to 35°. The hardness value of coating formed in solution A, B, C, D and E is 451.8; 388; 237; 156.8; 158.4 HV. The low hardness values in coatings C, D, and E were caused by the low concentration of Na3PO4 which reduced plasma population during the coating process. In addition, the presence of carbonate ions in the solution triggers an increase in the pores in the coating. The results of the polarization test showed can increase corrosion resistance of two orders compared to substrate. Addition of ethanol to solution tends to slightly lower the corrosion resistance of coating."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alya Putri Khairunisa
"Penggunaan paduan magnesium sebagai material bio-metalik memiliki potensi untuk terurai secara alami dalam cairan tubuh dan berperan penting dalam struktur tulang. Dalam aplikasinya, modifikasi permukaan paduan magnesium diperlukan untuk meningkatkan sifat mekanik dan anti-korosinya. Salah satu metode pelapisan menjanjikan adalah Plasma Electrolytic Oxidation (PEO). Pada penelitian ini, dilakukan pelapisan paduan magnesium AZ31 dengan metode PEO menggunakan pendekatan one-step dan two-step. Parameter ditetapkan sama dalam penggunaan kedua metode ini yaitu meliputi waktu, rapat arus, sumber tegangan, dan suhu. Pada metode two-step PEO, lapisan HA (hidroksiapatit) disisipkan ke dalam lapisan oksida yang terbentuk. Hasil penelitian menunjukkan bahwa metode two-step PEO menghasilkan lapisan dengan karakteristik lebih baik dibandingkan metode one-step PEO. Lapisan two-step PEO memiliki persentase pori lebih kecil, ketebalan lapisan lebih besar, dan nilai spesifik abrasi lebih rendah. Selain itu, fasa kristalin baru, yaitu Ca5(PO4)3OH atau HA, terdeteksi dalam lapisan two-step PEO. Penggunaan metode two-step PEO dengan penambahan hidroksiapatit memberikan hasil lebih baik dalam hal karakterisasi morfologi dan sifat ketahanan aus. Dalam konteks aplikasi biomedis, hal ini menunjukkan potensi penggunaan paduan magnesium dengan metode pelapisan two-step PEO sebagai material cocok untuk aplikasi tulang dan gigi manusia.

The use of magnesium alloy as a bio-metallic material has the potential to decompose naturally in body fluids and plays an essential role in bone structure. In its application, surface modification of magnesium alloy is required to improve its mechanical and anti-corrosion properties. One of the promising coating methods is Plasma Electrolytic Oxidation (PEO). In this study, the coating of magnesium alloy AZ31 was carried out using a one-step and two-step approach using the PEO method. The parameters used in both methods include the same time, current density, voltage source, and temperature. In the two-step PEO method, a HA (hydroxyapatite) layer is inserted into the formed oxide layer. The results showed that the two-step PEO method produced layers with better characteristics than the one-step PEO method. The PEO two-step coating has a smaller pore percentage, a larger layer thickness, and a lower abrasion-specific value. In addition, a new crystalline phase, namely Ca5(PO4)3OH or HA, was detected in the two-step PEO layer. The two-step PEO method with hydroxyapatite adds better morphology characterization and wear resistance properties. This demonstrates the potential use of magnesium alloys coated by the two-step PEO method as suitable materials for human bone and tooth applications in biomedical applications."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asweda Luluk Saptaningrum
"Magnesium dan paduannya telah digunakan di berbagai industri karena memiliki rasio kekuatan terhadap berat yang tinggi, modulus elastisitas dan densitas yang rendah, serta sifat mampu bentuk dan manufaktur yang baik. Namun, magnesium memiliki ketahanan korosi dan aus yang rendah. Untuk mengatasi hal tersebut, diperlukan rekayasa permukaan pada paduan magnesium. Plasma Electrolytic Oxidation (PEO) menghasilkan lapisan keramik oksida yang dapat meningkatkan ketahanan korosi dan aus paduan magnesium. Jenis elektrolit yang digunakan karakteristik dan waktu hidup plasma. Dalam penelitian ini, proses PEO dilakukan pada paduan AZ91 dalam elektrolit berbasis campuran silikat, fosfat, dan hidroksida yaitu Na3PO4, Na2SiO3, dan KOH. Proses PEO dilakukan dengan menggunakan rapat arus konstan sebesar 533 A/m2 selama 10 menit. Parameter proses tersebut dipilih untuk memperlama waktu hidup plasma. Pada penelitian sebelumnya, plasma hanya dapat hidup selama 2 menit. Hasil analisis SEM-EDS menunjukkan bahwa lapisan PEO yang dihasilkan memiliki dua tipe warna, yaitu abu-abu dan putih dengan morfologi dan komposisi berbeda. Bagian putih memiliki morfologi yang tidak seragam dan banyak retakan, dibandingkan dengan bagian abu-abu yang memiliki sedikit pori dan retakan. Ketebalan lapisan yang terbentuk sebesar 53 ± 3 μm. Berdasarkan hasil analisis fasa XRD, terdapat fasa kristal dan amorf Mg2SiO4, Mg3(PO4)2, dan MgO pada lapisan PEO. Hasil tersebut dikonfirmasi oleh hasil analisis EDS dengan terdeteksinya unsur-unsur terkait. Bagian putih memiliki konsentrasi Si yang lebih tinggi dibandingkan bagian abu-abu. Bagian abu-abu memiliki daya tahan abrasi yang lebih tinggi dibandingkan lapisan putih yang ditunjukkan dari nilai spesifikasi abrasinya, yaitu 0,684 × 10-5 mm3/mm dibanding 1,48 × 10-5 mm3/mm. Hasil karakterisasi dan uji mekanik menunjukkan lapisan PEO yang terbentuk tebal dan memiliki ketahanan aus yang baik karena plasma dapat hidup sampai 10 menit.

Magnesium and its alloys have been used in various industries due to their high strength-to-weight ratio, low modulus of elasticity and density, as well as good formability and manufacturability. However, magnesium has low corrosion resistance and wear resistance. To overcome these challenges, surface engineering is required for magnesium alloys. Plasma Electrolytic Oxidation (PEO) produces a ceramic oxide layer that can enhance the corrosion resistance and wear resistance of magnesium alloys. The type of electrolyte used determines the characteristics and lifetime of the plasma. In this study, the PEO process was performed on the AZ91 alloy using an electrolyte based on a mixture of silicate, phosphate, and hydroxide, namely Na3PO4, Na2SiO3, and KOH. The PEO process was carried out using a constant current density of 533 A/m2 for 10 minutes. These process parameters were chosen to prolong the plasma lifetime. In previous studies, the plasma could only last for 2 minutes. The results of SEM-EDS analysis showed that the produced PEO layer had two different colors, namely gray and white, with different morphologies and compositions. The white part exhibited non-uniform morphology and numerous cracks compared to the gray part, which had fewer pores and cracks. The thickness of the formed layer was measured to be 53 ± 3 μm. Based on XRD phase analysis, crystal and amorphous phases of amorf Mg2SiO4, Mg3(PO4)2, and MgO were detected in the PEO layer. These findings were confirmed by EDS analysis, which detected related elements. The white part had a higher concentration of Si compared to the gray part. The gray part exhibited higher abrasion resistance compared to the white layer, as indicated by the abrasion specification values, which were 0,684 × 10-5 mm3/mm and 1,48 × 10-5 mm3/mm, respectively. The characterization and mechanical testing results indicated that the formed PEO layer was thick and had good wear resistance due to the plasma lifetime reaching 10 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reynaldo Putrayadi
"Magnesium (Mg) merupakan logam ringan yang memiliki beragam aplikasi, termasuk dalam industri otomotif dan sebagai bahan implan biodegradable. Meskipun penting, kelemahan utama magnesium adalah ketahanan korosinya yang rendah terutama dalam lingkungan yang mengandung klorida. Oleh karena itu, perbaikan sifat korosi magnesium diperlukan melalui rekayasa permukaan. Salah satu metode yang efektif dalam rekayasa permukaan magnesium adalah metode plasma electrolytic oxidation (PEO). Penelitian ini bertujuan untuk memahami pengaruh perbedaan kation yang digunakan sebagai elektrolit untuk PEO terhadap sifat mekanik dan ketahanan korosi lapisan PEO pada paduan magnesium AZ31. Elektrolit yang dimaksud adalah KOH dan NaOH. Dalam penelitian ini, dilakukan proses PEO pada paduan magnesium AZ31 menggunakan larutan basa seperti KOH, NaOH, dan campuran KNa. Proses ini menggunakan rapat arus 1000 A/m2 pada suhu 30ºC dalam waktu 10 menit. Sampel yang dihasilkan kemudian dianalisis menggunakan beberapa metode, termasuk pengamatan morfologi dan komposisi dengan SEM-EDS, uji mekanik untuk mengukur ketahanan aus dan kekerasan, serta eksperimen elektrokimia dengan EIS dan PDP. Larutan KOH, NaOH, dan KNa dapat meningkatkan ketahan korosi dan sifat mekanik lapisan PEO pada paduan magnesium AZ31. Data uji korosi menunjukkan bahwa larutan KOH memiliki tingkat korosi paling tinggi dibandingkan dengan NaOH dan KNa dengan nilai rapat arus dan resistansi polarisasi sebesar 7,31 × 10-5 A/cm2 dan 280 Ω.cm2 . Uji mekanik mengindikasikan peningkatan kekerasan dan ketahanan aus pada sampel yang diuji dengan larutan campuran KNa dengan nilai kekerasan sebesar 71 Hv dan nilai spesifik abrasi sebesar 9,07 × 10-6 mm3 /mm. Hal ini disebabkan oleh nilai at% dari unsur O pada elektrolit KNa lebih tinggi dibandingkan elektrolit NaOH dan KOH.

Magnesium (Mg) is a lightweight metal with diverse applications, including the automotive industry and as a material for biodegradable implants. Despite its significance, magnesium's primary weakness lies in its low corrosion resistance, particularly in chloride-containing environments. Therefore, improving magnesium's corrosion resistance is essential through surface engineering. One effective method for surface engineering of magnesium is the Plasma Electrolytic Oxidation (PEO) technique. This research aims to understand the influence of different cations used as electrolytes for PEO on the mechanical properties and corrosion resistance of PEO coatings on the AZ31 magnesium alloy. The electrolytes in focus are KOH and NaOH. In this study, the PEO process was conducted on the AZ31 magnesium alloy using basic solutions such as KOH, NaOH, and a mixture of KNa. The process employed a current density of 1000 A/m2 at a temperature of 30ºC for 10 minutes. The produced samples were then analyzed using various methods, including morphology and composition observation with SEM-EDS, mechanical testing for wear resistance and hardness measurement, as well as electrochemical experiments using EIS and PDP. KOH, NaOH, and KNa solutions successfully enhanced the corrosion resistance and mechanical properties of PEO coatings on the AZ31 magnesium alloy. Corrosion test data indicated that the KOH solution exhibited the highest corrosion rate compared to NaOH and KNa, with corrosion current density and polarization resistance values of 7,31 × 10-5 A/cm2 and 280 Ω.cm2 , respectively. Meanwhile, mechanical tests indicated improved hardness and wear resistance in samples treated with the KNa mixed solution, showing a hardness value of 71 Hv and specific abrasion value of 9,07 × 10-6 mm3 /mm. This can be attributed to the higher atomic percentage of oxygen in the KNa electrolyte compared to NaOH and KOH."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifka Anggraeni
"Logam ringan aluminium (Al) dan paduannya memiliki sifat mekanik yang cocok digunakan dalam industri penerbangan, perkapalan, dan otomotif. Proteksi terhadap permukaan logam Al diperlukan untuk meningkatkan ketahanan korosi dan aus. Plasma Electrolytic Oxidation (PEO) menghasilkanlapisan oksida tebal dan kristalin sehingga dapat meningkatkan ketahanan korosi dan ketahanan aus. Karakteristik mekanik dan korosi lapisan oksida hasil PEO sangat bergantung pada ketebalan dan morfologi lapisan yang ditentukan oleh waktu dan karakteristik plasma. Dalam penelitian ini, PEO dilakukan pada paduan Al seri 7075-T651 dengan menggunakan elektrolit campuran 30 g/lNa2SiO3, 30 g/l KOH, 30 g/l Na3PO4, dan 20 g/l TEA pada rapat arus konstan 200 A/m2dengan variasi waktu 10, 15, dan 20 menit. Lapisan PEO dikarakterisasi dengan menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) untuk menganalisis morfologi permukaan dan komposisi unsur. Perilaku korosi pada sampel dievaluasi melalui uji elektrokimia, yaitu Open Circuit Potential (OCP), Electrochemical Impedence Spectroscopy (EIS), dan juga Potentiodynamic Polarization (PDP). Sifat mekanik lapisan PEO diuji dengan metode Vickers microhardness, dan ketahanan aus diuji menggunakan metode Ogoshi. Unsur P, Si, O merupakan lapisan perlindungan terhadap korosi semakin meningkat seiring berjalannya waktu. Hasil XRD menunjukkan adanya lapisan Al2O3, SiO2, dan AlPO4. Hasil uji elektrokimia PDP dan EIS menunjukkan bahwa PEO 15 menit menunjukkan kinerja korosi yang paling baik, memiliki rapat arus korosi terendah sebesar 1,20 × 10-7 A.cm−2 dan hambatan tertinggi sebesar 706,8 Ω.cm2 dan 1,65 × 104 Ω.cm2. Tetapi, uji mekanik menunjukkan bahwa PEO 15 menitmemiliki tingkat keausan yang tinggi sebesar 20,8 mm3/mm dan kekerasan sebesar 143 HV. Sedangkan PEO 20 menit nilai keausan lebih rendah sekitar 8 mm3/mm dan kekerasan sebesar 159,4 HV serta sudut kontak sebesar 78˚.

The lightweight metal aluminum (Al) and its alloys exhibit mechanical properties suitable for use in the aerospace, shipping, and automotive sectors. Surface protection of Al metal is necessary to enhance corrosion and wear resistance. Plasma Electrolysis Oxidation (PEO) produces thick and crystalline oxide layers, thus improving high corrosion resistance and high wear resistance. The mechanical and corrosion characteristics of PEO oxide layers greatly depend on the thickness and morphology of the layers determined by time and plasma characteristics. In this study, PEO was performed on 7075-T651 series Al alloy using a mixed electrolyte of 30 g/l Na2SiO3, 30 g/l KOH, 30 g/l Na3PO4, and 20 g/l TEA at a constant current density of 200 A/m2 with time variations of 10, 15, and 20 minutes. The PEO layers were characterized using X-Ray Diffractometer (XRD) to analyze the crystal phase composition, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) to analyze surface morphology and elemental composition. Corrosion behavior on the samples was evaluated through electrochemical tests, namely Open Circuit Potential (OCP), Electrochemical Impedance Spectroscopy (EIS), and Potentiodynamic Polarization (PDP). The mechanical properties of PEO layers were tested using the Vickers microhardness method, and wear resistance was tested using the Ogoshi method. The protective layer against corrosion increases over time with elements P, Si, O. XRD results show the presence of Al2O3, SiO2, and AlPO4 layers. PDP and EIS electrochemical test results indicate that PEO for 15 minutes shows the best corrosion performance, with the lowest corrosion current density of 1.20 × 10-7 A.cm−2 and the highest impedance of 706.8 Ω.cm2 and 1,65 × 104 Ω.cm2. However, mechanical tests show that the 15-minute PEO has a high wear rate of 20.8 mm3/mm and a hardness of 143 HV. Meanwhile, the 20-minute PEO has a lower wear rate of about 8 mm3/mm and a hardness of 159.4 HV, as well as a contact angle of 78˚."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Miranda Cahyeni
"Magnesium (Mg) merupakan logam ringan. Namun, magnesium dan paduannya mengalami degradasi yang sangat cepat di dalam lingkungan yang basah. Selain itu sifat film alami pada paduan magnesium sangat tipis, sehingga paduan magnesium memiliki ketahanan korosi yang sangat rendah. Hal ini menyebabkan kekuatan mekanik pada paduan magnesium mengalami penurunan. Untuk menangani masalah tersebut maka dilakukan Plasma electrolytic Oxidation (PEO) untuk meningkatkan ketahanan korosi pada paduan magnesium. Lapisan film oksida yang dihasilkan dari proses PEO bersifat tebal dan keras, namun juga memiliki pori, retakan dan lapisan yang tidak rata. Proses PEO dilakukan dengan memvariasikan waktu PEO dan arus selama PEO yang berlangsung di dalam elektrolit 0.5 M Na3PO4 pada suhu 30°C ± 1°C. PEO dilakukan dengan variasi waktu 30, 60 dan 90 detik. Ketebalan yang dihasilkan untuk masing-masing variasi waktu adalah 16,23, 27,76 dan 33,11 μm. Sedangkan untuk variasi arus 0,2, 0,3 dan 0,4 A akan dihasilkan ketebalan film oksida 32,61, 55,65 dan 66,25 μm. Untuk mengetahui laju korosi paduan magnesium yang telah diberi perlakuan PEO dilakukan dengan uji polarisasi di dalam larutan 3,5% NaCl pada suhu 30°C. Hasil uji polarisasi untuk variasi waktu menunjukkan peningkatan ketahanan korosi yang ditandai dengan kenaikan potensial korosi pada substrat, 30, 60 dan 90 detik berturut-turut adalah -1.22, -1.26, -0.75 dan -1.03 VAg/AgCl dan penurunan arus korosi berturut-turut 94,79, 11.30, 0.36 dan 0,67 μA/cm2. Sedangkan untuk variasi arus 0,2, 0,3 san 0,4 A menunjukkan kenaikan potensial korosi berturut-turut  -1,24, -1,18 dan 0,41 VAg/AgCl dan penurunan arus korosi berturut-turut adalah 5,1, 4,6 dan 4,3 μA/cm2. Hasil tersebut menunjukkan bahwa PEO dapat meningkatkan ketahanan  korosi pada paduan magnesium AZ91.

Magnesium (Mg) is a lightweight metal. However, Magnesium and its alloys experience very rapid degradation in wet environments. In addition, the natural film properties of magnesium alloys are very thin, so magnesium alloys have very low corrosion resistance. This causes the mechanical strength of the magnesium alloy to decrease. To deal with these problems, a Plasma Electrolytic Oxidation (PEO) was performed to improve corrosion resistance in magnesium alloys. The oxide film layer produced from the PEO process is thick and hard, but also has pores, cracks and uneven layers. The PEO process is carried out by varying the time of the PEO and the current during the PEO that takes place in a 0.5 M Na3PO4 electrolyte at a temperature of 30 °C ± 1 °C. PEO is done with a time variation of 30, 60 and 90 seconds. The thickness produced for each time variation is 16.23, 27.76 and 33.11 μm. As for the current variations of 0.2, 0.3 and 0.4 A, an oxide film thickness of 32.61, 55.65 and 66,25 μm  To determine the corrosion rate of magnesium alloys that have been treated with PEO is done by polarization testing in a solution of 3.5% NaCl at 30 °C. The polarization test results for time variation show an increase in corrosion resistance which is characterized by an increase in corrosion potential on the substrate, 30, 60 and 90 seconds respectively -1.22, -1.26, -0.75 and -1.03 VAg/AgCl and a decrease in corrosion currents respectively 94.79, 11.30, 0.36 and 0.67 μA/cm2. As for the current variations of 0.2, 0.3 and 0.4 A, it shows a increase in corrosion potential of -1.24, -1.18 and 0.41 VAg/AgCl and an decrease in corrosion current respectively 5,1, 4,6 dan 4,3 μA/cm2. These results indicate that PEO can increase corrosion resistance in AZ91 magnesium alloys."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deva Rifa Nurgantini
"Aluminium (Al) adalah logam ringan dengan massa jenis 2,7 g/cm3. Untuk melindungi permukaan paduan Al dari lingkungan korosif dan abrasif, dibutuhkan rekayasa permukaan seperti PEO. Karakteristik lapisan oksida hasil PEO dipengaruhi oleh arus dan durasi proses. Penelitian ini bertujuan untuk menganalisis evolusi morfologi dan pengaruhnya terhadap karakteristik mekanik dan ketahanan korosi lapisan PEO. PEO diaplikasikan pada paduan Al 7075-T651 menggunakan elektrolit 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 dengan rapat arus konstan 200 A/m2. Waktu proses PEO divariasikan 10, 15, dan 20 menit. Lapisan PEO dikarakterisasi menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) untuk menganalisis morfologi permukaan dan komposisi unsur. Perilaku korosi pada sampel dievaluasi melalui uji elektrokimia, yaitu Potentiodynamic Polarization (PDP) dan Electrochemical Impedence Spectroscopy (EIS). Hasil analisis XRD mengindikasikan bahwa lapisan PEO bersifat amorf. Konsentrasi oksigen dalam lapisan yang dideteksi dengan EDS meningkat seiring bertambahnya durasi proses PEO sesuai dengan peningkatan ketebalan lapisan. Hasil uji elektrokimia PDP dan EIS menunjukkan sampel PEO 15 menit memiliki ketahanan korosi terbaik dengan nilai rapat arus korosi terendah sebesar 2,28 dan nilai hambatan tertinggi sebesar 1,038 dan 1,123. Hasil uji mekanik menunjukkan PEO 10 menit memiliki nilai keausan tertinggi sebesar dan nilai kekerasan sebesar 129,8 HV; PEO 15 menit memiliki nilai keausan sebesar dan nilai kekerasan sebesar 131,8 HV; dan PEO 20 menit memiliki nilai keausan terendah yaitu dan nilai kekerasan tertinggi yaitu 142 HV yang menunjukkan bahwa sampel dengan durasi lebih lama dapat menghasilkan sifat mekanik yang lebih unggul

Aluminium (Al) is a lightweight metal with a density of 2,7 g/cm3. To protect the surface of Al alloys from corrosive and abrasive environments, surface engineering techniques such as Plasma Electrolytic Oxidation (PEO) are required. The characteristics of the PEO-derived oxide layers are influenced by the current and process duration. This study aims to analyze the morphological evolution and its impact on the mechanical properties and corrosion resistance of PEO layers. PEO was applied to Al 7075-T651 alloy using an electrolyte of 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 with a constant current density of 200 A/m2. The PEO process duration was varied at 10, 15, and 20 minutes. The PEO layers were characterized using X-Ray Diffractometer (XRD) to analyze the composition of crystalline phases, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) to analyze surface morphology and elemental composition. Corrosion behavior was evaluated through electrochemical tests, namely Potentiodynamic Polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS). XRD analysis indicated that the PEO layers were amorphous. The oxygen concentration in the detected layers using EDS increases with the duration of the PEO process, in line with the increase in layer thickness. Electrochemical tests PDP and EIS showed that the PEO 15 minute sample exhibited the best corrosion resistance with the lowest corrosion current density of 2,28 and the highest resistance values of 1,038 and 1,123. Mechanical test results indicated that the PEO 10 minute sample had the highest wear resistance of and a hardness value of 129,8 HV; PEO 15 minute sample had a wear resistance of and a hardness value of 131,8 HV; and PEO 20 minute sample had the lowest wear resistance of and the highest hardness value of 142 HV, suggesting that longer process durations produce superior mechanical properties."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sri Rahmadani
"

Plasma electrolytic oxidation (PEO) merupakan metode konversi permukaan logam menjadi lapisan oksida dengan bantuan plasma yang bertujuan untuk meningkatkan sifat mekanik permukaan dan ketahanan korosi logam. Retakan dan pori menurunkan ketahanan korosi dan sifat mekanik lapisan. Dalam penelitian ini digunakan zat aditif SiO2 dan metode post-alkali treatment pada lapisan PEO yang ditumbuhkan pada paduan magnesium AZ31 dan commercially pure titanium (CP-Ti). PEO dilakukan di dalam larutan 95 g/l Na3PO4 + 2 g/l KOH menggunakan rapat arus DC  sebesar 300 A.m-2 selama 10 menit. NP-SiO2 sebanyak 2 g/l ditambahkan di dalam larutan PEO. Setelah logam terlapisi, post-alkali treatment dilakukan di dalam larutan 0,5 M NaOH pada suhu 80 ºC selama 30 menit. Morfologi permukaan dan kandungan unsur lapisan dianalisis menggunakan SEM-EDS dan XPS. Komposisi fasa kristal diteliti menggunakan X-ray Difraction (XRD). Sifat mekanik lapisan PEO diuji dengan metode vickers microhardness dan ketahanan aus dievaluasi menggunakan metode Ogoshi. Sifat korosi dianalisis dengan uji polarisasi, EIS, dan uji rendam. Sifat bioaktivitas diteliti dengan cara perendaman sampel dalam larutan SBF. Hasil penelitian menunjukkan penambahan aditif SiO2 dan post-alkali treatment dapat meningkatkan ketahanan korosi dan sifat mekanik lapisan PEO pada logam Mg dan Ti. Pada PEO-Mg, lapisan PEO/SiO2+AT memiliki nilai rapat arus korosi paling rendah dan nilai kekerasan paling tinggi dibandingkan dengan sampel lainnya yaitu berturut-turut 7,34x10-7 A.cm-2 dan 359 HV. Tren yang sama juga dihasilkan pada PEO-Ti, lapisan PEO/SiO2+AT memiliki nilai rapat arus korosi relatif rendah dan nilai kekerasan paling tinggi dibandingkan dengan sampel lainnya yaitu berturut-turut 3,4x10-9 A.cm-2 dan 305 HV.


Plasma electrolytic oxidation (PEO) is a method of converting metal surfaces into an oxide layer with the help of plasma which aims to improve the surface mechanical properties and corrosion resistance of metals. Cracks and pores reduce the corrosion resistance and mechanical properties of the coating. In this research, SiO2 additives and post-alkali treatment methods were used on PEO layers grown on AZ31 magnesium alloy and commercially pure titanium (CP-Ti). PEO was carried out in a solution of 95 g/l Na3PO4 + 2 g/l KOH using a DC current density of 300 A.m-2 for 10 minutes. SiO2 additive with a concentration of 2 g/l was added to the PEO solution. After the metal is coated, post-alkali treatment is carried out in a 0.5 M NaOH solution at a temperature of 80 ºC for 30 minutes. The surface morphology and element content of the layers were analyzed using SEM-EDS and XPS. The composition of the crystal phase was investigated using XRD. The mechanical properties of the PEO coating were tested using the vickers microhardness and the wear resistance was evaluated using the Ogoshi method. Corrosion properties were analyzed by polarization test, EIS, and immersion test. The bioactivity properties were studied by immersing the samples in SBF. The research results show that the addition of SiO2 and post-alkali treatment can improve the corrosion resistance and mechanical properties of PEO layers on Mg and Ti metals. In PEO-Mg, the PEO/SiO2+AT layer has the lowest corrosion current density value and the highest hardness value compared to other samples, namely 7.34x10-7 A.cm-2 and 359 HV respectively. The same trend was also produced on PEO-Ti, the PEO/SiO2+AT layer had a relatively low corrosion current density value and the highest hardness value compared to other samples, namely 3.4x10-9 A.cm-2 and 305 HV respectively.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>