Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 188735 dokumen yang sesuai dengan query
cover
Fransisco William Sudianto
"Perkembangan LargeLanguageModel (LLM) terjadisecaracepatdanmengalami kemajuanyangsignifikan.HalinimendorongpenggunaandanpemanfaatanLLM pada berbagaibidang.Disisilain, KnowledgeGraph (KG) menyediakancarayang terstruktur danbermaknauntukmenyimpaninformasi.KGsudahbanyakdigunakan secara luasdiberbagaiaplikasi,sepertimesinpencari,sistemrekomendasi,dansistem penjawabpertanyaan.SalahsatupemanfaatanLLMdanKGyangmasihjarangadalah pada bidangjurnalistik,khususnyauntukmenganalisisdanmemvisualisasikanberita. Penelitian inibertujuanuntukmengembangkanalatekstraksiinformasiyangefisien, akurat, daninteraktifuntukmenganalisisteksberitamenggunakanpendekatangabungan antara LLMdanKG.Metodeinimenggabungkankeunggulankeduatekniktersebut untuk meningkatkanpemahamandanekstraksiinformasidariteksberitayangkompleks. Tujuannyaadalahagarpembacadapatmemahamiinformasiyangterdapatpadateks berita denganlebihinteraktif.PenulismemanfaatkanLLMyangtelahterlatihsecara luas dalammemahamidanmenghasilkanteksuntukmengidentifikasiinformasipenting dalam teksberita,sepertientitas,sentimen,kutipan,relasiantarentitas,danunsur5W1H (Who, What, Where, When, Why, How), urutankronologiskejadian,danhubungan bagian-keseluruhan(mereology) dalamteksberita.Untukmengekstraksiinformasiterse- but, prompt dimodifikasi denganmenggunakanpendekatan one-shot-prompting untuk memberikan konteksdancontohkepadaLLMdalammemahamiteksberita.Kemudian, informasi yangdiekstraksidivisualisasikandalambentukKGyangmerepresentasikan pengetahuan terstrukturtentangentitasdanhubungannyadidalamteks.Selainitu, penelitian melibatkanpembuatansebuahwebsiteyangakanmenyediakanantarmuka untuk sistemagarpenggunadapatmelakukananalisisteksberitasecaralangsungdan interaktif. Evaluasiutamayangdilakukanpadapenelitianiniadalahmengukurakurasi jawabanyangdihasilkanolehLLMpadasetiapbagianinformasiyangdiekstraksi dan bagaimanavisualisasiKGyangbaikuntukinformasiyangdidapat.Penelitianini menunjukkan bahwaLLMmampumengekstraksiinformasiyangdiinginkandengan cukup akuratdanvisualisasiKGdapatmenyajikaninformasidenganlebihinteraktif dan mudahdimengerti.PenelitianinitelahmenunjukkanbahwaLLMdanKGdapat dimanfaatkansebagaialatekstraksidanvisualisasiinformasiyangadapadateksberita.

The developmentoftheLargeLanguageModel(LLM)israpidlyoccurringandex- periencing significantprogress.ThisencouragestheuseandutilizationofLLMin variousfields.Ontheotherhand,KnowledgeGraph(KG)providesastructuredand meaningful waytostoreinformation.KGhasbeenwidelyusedinvariousapplications, such assearchengines,recommendationsystems,andquestionansweringsystems. One utilizationofLLMandKGthatisstillrarelyusedisinthefieldofjournalism, especially foranalyzingandvisualizingnews.Thisresearchaimstodevelopaneffective, interactive,andaccurateinformationextractiontoolforanalyzingnewstextsusing a combinedapproachbetweenLLMandKG.Thismethodcombinestheadvantages of bothtechniquestoimprovetheunderstandingandextractionofinformationfrom complexnewstexts.Thegoalisforreaderstounderstandtheinformationcontainedin the newstextinteractively.TheauthorutilizesLLMswhohavebeenextensivelytrained in understandingandgeneratingtextstoidentifyimportantinformationinnewstexts, such asentities,sentiments,quotes,relationsbetweenentities,and5W1H(Who,What, Where, When,Why,How),chronologicalorderofevents,andpart-wholerelationships (mereology) elementsinnewstexts.Toextractthatinformation,thepromptwasmodified by usingaone-shot-promptingapproachtoprovidecontextandexamplestoLLMsin understanding thenewstext.Then,theextractedinformationisusedtobuildaKGthat represents structuredknowledgeaboutentitiesandrelationshipsinthetext.Inaddition, the developmentplaninvolvescreatingawebsitethatwillprovideaninterfaceforthis system toallowuserstoperformliveandinteractivenewstextanalysis.Themain evaluationconductedinthisresearchistomeasuretheaccuracyoftheanswersgenerated by LLMoneachpieceofinformationextractedandhowgoodKGvisualizationisfor the informationobtained.ThisresearchshowsthatLLMisabletoextractthedesired information quiteaccuratelyandKGvisualizationcanpresentinformationinamore interactiveandeasytounderstandmanner.ThisresearchhasshownthatLLMandKG can beusedasinformationextractionandvisualizationtoolsinnewstexts."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Hartadi
"ABSTRAK
Undang-Undang adalah Peraturan Perundang-undangan yang dibentuk oleh Dewan Perwakilan Rakyat dengan persetujuan Presiden. Undang-Undang memiliki sifat mengikat secara umum. Semua ketentuan pada Undang-Undang berlaku untuk seluruh rakyat Indonesia, termasuk ketentuan pidana di dalamnya. Oleh karena itu, setiap warga negara Indonesia perlu memahami informasi sanksi pidana pada Undang-Undang. Melalui penelitian ini, peneliti mengajukan metode untuk mendapatkan informasi pidana dari Undang-Undang. Pendekatan yang dilakukan adalah dengan melakukan klasifikasi tiap pasal, ayat, dan poin huruf pada Undang-Undang. Penelitian ini menggunakan tiga metode klasifikasi, yaitu Support Vector Machine, Classification and Regression Tree, dan Ripple Down Rules Learner. Hasil pengujian menunjukkan bahwa metode Classification and Regression Tree memberikan hasil terbaik, dengan F1-score mencapai 93,3 .

ABSTRACT
Law is a set of provisions and rules formed by People 39 s Representative Council with the agreement of President. Law generally binds every people in Indonesia. In other words, all provisions in Law apply to all people in Indonesia, including the punishment provisions. Because of that, every Indonesian people needs to understand the punishment provisions in Law documents. In this research, we propose a method to get all the punishment provisions from Law text. The approach taken is by doing classification on every articles, verses, and points in Law document. We use three classification methods in this research, which are Support Vector Machine, Classification and Regression Tree, and Ripple Down Rules Learner. Experiment results show that Classification and Regression Tree gives the best results, with F1 score reaching 93,3 ."
Depok: 2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rida Indah Fariani
"Pendidikan vokasi memiliki beberapa karakteristik utama, yaitu (1) berfokus pada perolehan kompetensi dan keterampilan tertentu, dan (2) mengutamakan pengajaran praktis. Dengan karakteristik tersebut, mahasiswa dituntut untuk memenuhi target kompetensi dan keterampilan yang sama yang telah ditetapkan. Disisi lain, adanya keragaman karakteristik mahasiswa dapat menyebabkan perbedaan dalam hal proses belajar. Untuk mencapai target kompetensi yang diharapkan dan mengakomodir keragaman mahasiswa, penggunaan konsep personalized e-learning dapat menjadi pilihan. Sementara itu, dengan karakteristik kurikulum vokasi yang mengutamakan pengajaran praktikum, penggunaan model pembelajaran bauran dapat menjawab tantangan ketika pembelajaran daring tidak dapat sepenuhnya diterapkan pada pendidikan vokasi. Oleh karena itu, penggunaan konsep personalized learning pada pembelajaran bauran dapat menjadi solusi. Dengan demikian penelitian ini bertujuan untuk (1) membangun model personalisasi pembelajaran bauran (p-PB) yakni model yang menggunakan konsep personalized learning dalam konteks kurikulum vokasi yang bersifat serial dan diintegrasikan dengan model pembelajaran bauran; (2) membangun purwarupa sistem berdasarkan model; dan (3) mengukur dampak implementasi sistem terhadap pembelajaran pada pendidikan tinggi vokasi.
Metodologi yang digunakan dalam penelitian ini adalah exploratory sequential mixed method. Metode kualitatif digunakan dalam studi literatur dan evaluasi model, sementara metode kuantitatif digunakan dalam survei mengenai pembelajaran praktikum pada pendidikan tinggi vokasi dan eksperimen dalam melakukan evaluasi pada implementasi sistem p-PB.
Model p-PB yang dikembangkan dalam penelitian ini terdiri dari tiga komponen yakni model mahasiswa, model knowledge, dan model personalisasi. Model mahasiswa mengklasifikasikan mahasiswa berdasarkan tingkat pengetahuan (dasar, menengah, lanjut) dan gaya belajar sesuai teori Felder Silverman Learning Style Model (FSLSM) dengan fokus pada dua gaya dominan. Model knowledge memberikan anotasi pada learning object dengan tingkat kesulitan (mudah, sedang, sulit) dan disesuaikan dengan dimensi dalam teori FSLSM. Pada model personalisasi, strategi personalisasi yang diusulkan mencakup rekomendasi learning object dan sistem umpan balik yang sesuai dengan model mahasiswa. Sistem umpan balik memberikan rekomendasi berdasarkan hasil asesmen dan jika dibutuhkan akan berulang untuk memastikan mahasiswa menguasai kompetensi sebelum melanjutkan modul. Hal ini untuk mengakomodir kurikulum pendidikan tinggi vokasi yang berfokus pada penguasaan kompetensi secara berurutan. Model p-PB diintegrasikan dengan pembelajaran bauran yang mengkombinasikan model station rotation dan flipped classroom, di mana tingkat pengetahuan dijadikan station dalam pengajaran sinkronus dan asinkronus.
Purwarupa sistem p-PB dikembangkan dengan metodologi SDLC. Rekomendasi dan umpan balik yang diberikan menggunakan pendekatan knowledge-based. Knowledge direpresentasikan dengan menggunakan ontologi dan diimplementasikan dengan knowledge graph. Knowledge graph tidak hanya menghubungkan learning object, tingkat kesulitan, gaya belajar, dan hasil asesmen mahasiswa dalam jaringan yang terstruktur, tetapi juga berfungsi sebagai sistem penyimpanan dan pengelolaan data knowledge. Dengan menggunakan knowledge graph, sistem dapat menelusuri jalur yang paling relevan dan efisien untuk memberikan rekomendasi learning object dan umpan balik yang dipersonalisasi.
Evaluasi terhadap purwarupa sistem p-PB dilakukan dengan metode eksperimen berupa implementasi sistem dengan menggunakan kelas eksperimen dan kelas kontrol. Eksperimen dilakukan pada dua mata kuliah di salah satu perguruan tinggi vokasi di Jakarta yakni mata kuliah Pemrograman 1 dan Perancangan Proses Manufaktur. Kelas eksperimen menggunakan sistem p-PB dalam pembelajaran, sementara kelas kontrol menggunakan LMS institusi dan tidak menggunakan sistem p-PB. Hasil implementasi menunjukkan kelas eksperimen mencapai tingkat pencapaian hasil belajar yang lebih tinggi secara signifikan dibandingkan dengan kelas kontrol pada kedua mata kuliah yang diuji. Persepsi dan kepuasan mahasiwa mengenai tingkat kegunaan sistem p-PB cukup baik dengan skor SUS 74,36. Dari wawancara mahasiswa didapat sistem dapat meningkatkan pemahaman, kepercayaan diri, dan antusiasme mahasiswa. Dapat dikatakan terdapat pengaruh positif sistem p-PB terhadap hasil belajar dan pengalaman belajar mahasiswa. Hasil penelitian ini dapat dijadikan dasar bagi implementasi pada perkuliahan dan institusi sejenis lainnya.

Vocational education has several main characteristics, namely (1) focusing on the acquisition of specific competencies and skills, and (2) prioritizing practical teaching. With these characteristics, students are required to meet the same competency and skill targets that have been set. On the other hand, the diversity of students’ characterisitcs can lead to differences in the learning process. To achieve the expected competency targets and accommodate student diversity, the use of personalized e-learning concepts can be an option. Meanwhile, given the vocational curriculum's emphasis on practical teaching, the use of blended learning models can address the challenges when online learning cannot be fully applied to vocational education. Therefore, the use of personalized learning concepts in blended learning can be a solution. Thus, this research aims to (1) develop a personalized blended learning (p-BL) model, which uses the personalized learning concept in the context of a vocational curriculum that is sequential and integrated with the blended learning model; (2) develop a system prototype based on the model; and (3) measure the impact of system implementation on learning in vocational higher education.
The methodology used in this research is exploratory sequential mixed method. Qualitative methods are used in literature studies and model evaluation, while quantitative methods are used in surveys on practical learning in vocational higher education and experiments to evaluate the implementation of the p-BL system.
The p-BL model developed in this research consists of three components: the student model, the knowledge model, and the personalization model. The student model classifies students based on knowledge level (basic, intermediate, advanced) and learning style according to the Felder Silverman Learning Style Model (FSLSM) theory with a focus on two dominant styles. The knowledge model annotates learning objects with difficulty levels (easy, medium, hard) and aligns them with dimensions in the FSLSM theory. In the personalization model, the proposed personalization strategies include recommending learning objects and a feedback system tailored to the student model. The feedback system provides recommendations based on assessment results and, if necessary, repeats to ensure students master the competencies before proceeding to the next module. This accommodates the sequential competency mastery focus of vocational higher education curricula. The p-BL model is integrated with blended learning that combines the station rotation model and flipped classroom, where knowledge levels are used as stations in synchronous and asynchronous teaching.
The p-BL system prototype is developed using the SDLC methodology. Recommendations and feedback are provided using a knowledge-based approach. Knowledge is represented using ontology and implemented with a knowledge graph. The knowledge graph connects learning objects, difficulty levels, learning styles, and student assessment results in a structured network and serves as a data storage and management system. Using the knowledge graph, the system can trace the most relevant and efficient paths to provide personalized learning object recommendations and feedback.
The p-BL system prototype evaluation was conducted using experimental methods involving system implementation with an experimental class and a control class. The experiment was carried out in two courses at a vocational higher education institution in Jakarta, namely Programming 1 and Manufacturing & Process Design. The experimental class used the p-BL system in learning, while the control class used the institution's LMS and did not use the p-BL system. The implementation results showed that the experimental class achieved significantly higher learning outcome levels compared to the control class in both tested courses. From 51 students in the experimental class, the student perceptions and satisfaction with the usability of the p-BL system were quite good with a SUS score of 74.36. Interviews with 12 students revealed that the system could enhance students' understanding, confidence, and enthusiasm. It can be said that there is a positive impact of the p-BL system on student learning outcomes and learning experiences. The results of this study can serve as a basis for implementation in similar courses and institutions.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Halif
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Nur Fadhilah
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
Unggah3  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
Unggah3  Universitas Indonesia Library
cover
Muhammad Halif
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Ekstraksi informasi merupakan sebuah tahap awal dari proses analisis data tekstual. Ekstraksi informasi diperlukan untuk mendapatkan informasi dari data tekstual sehingga dapat digunakan untuk proses analisis seperti misalnya klasifikasi dan kategorisasi. Data tekstual
sangat dipengaruhi oleh bahasa, jika sebuah data tekstual berbahasa Arab maka karakter yang digunakan adalah karakter arab.
Knowledge dictionary merupakan sebuah kamus yang dapat digunakan untuk mengekstraksi informasi dari data tekstual. Informasi yang diekstraksi menggunakan knowledge dictionary adalah konsep.
Knowledge dictionary biasanya dibangun secara manual oleh seorang pakar yang tentunya membutuhkan waktu yang lama dan spesifik untuk
setiap masalah. Pada penelitian ini diusulkan sebuah metode untuk membangun knowledge dictionary secara otomatis. Pembentukan
knowledge dictionary dilakukan dengan cara mengelompokkan kalimat yang memiliki konsep yang sama, dengan asumsi kalimat yang memiliki konsep yang sama akan memiliki nilai simi laritas yang tinggi. Konsep yang telah diekstraksi dapat digunakan sebagai fitur untuk proses komputasi berikutnya misalnya klasifikasi ataupun kategorisasi.
Dataset yang digunakan dalam penelitian ini adalah dataset teks Arab. Hasil ekstraksi diuji dengan menggunakan mesin klasifikasi
decision tree dan didapatkan nilai presisi tertinggi 71,0% dan nilai recall tertinggi 75,0%.

Abstract
Information extraction is an early stage of a process of textual data analysis. Information extraction is required to get information from textual data that can be used for process analysis, such as classification and categorization. A textual data is strongly influenced by the language. Arabic is gaining a significant attention in
many studies because Arabic language is very different from others, and in contrast to other languages, tools and research on the Arabic language is still lacking. The information extracted using the knowledge
dictionary is a concept of expression. A knowledge dictionary is usually constructed manually by an expert and this would take a long time and is specific to a problem only. This paper proposed a method for automatically building a knowledge dictionary. Dictionary knowledge is formed by classifying sentences having the same concept, assuming that they will have a high similarity value. The concept that has been extracted can be used as features for subsequent computational process such as classification or categorization. Dataset used in this paper was the Arabic text dataset. Extraction result was tested by using a decision tree classification engine and the highest precision value obtained was 71.0% while the highest recall value was 75.0%. "
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Institut Teknologi Sepuluh Nopember. Fakultas Teknologi Informasi], 2012
pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>