Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 153150 dokumen yang sesuai dengan query
cover
Ilhan Firka Najia
"Penelitian ini mengeksplorasi efektivitas penggunaan neural rerankers yang telah dilatih sebelumnya dalam meningkatkan kinerja model berbasis text matching seperti BM25 untuk digunakan dalam deteksi pertanyaan duplikat pada consumer health forum. Studi ini juga meneliti metode agregasi hasil reranking dari berbagai neural rerankers untuk menghasilkan performa yang lebih baik dibandingkan penggunaan reranker individual. Metode reranking pertama menggunakan BM25, diikuti oleh reranking kedua menggunakan model neural seperti cross-encoder/ms-marco-MiniLM-L-12-v2, paraphrase-MiniLM-L6-v2, dan lainnya. Tahap ketiga melibatkan teknik rank fusion seperti Borda Fuse, Condorcet, dan Weighted Combsum. Hasil menunjukkan bahwa kombinasi reranking dengan neural reranker secara signi kan meningkatkan efektivitas model BM25, terutama saat menggunakan teknik rank fusion yang lebih canggih seperti Weighted Combsum. Studi ini menyarankan bahwa agregasi hasil reranking dapat mengatasi kelemahan individual reranker dan memberikan hasil yang lebih konsisten dan efektif. Penelitian ini membuka jalan untuk eksplorasi lebih lanjut dalam optimisasi kombinasi model untuk pencarian informasi yang lebih akurat dan e sien.

This study explores the effectiveness of using pre-trained neural rerankers in improving the performance of text matching based models such as BM25 for use in duplicate question detection in textitconsumer health forum. This study also examines the method of aggregating reranking results from various neural rerankers to produce better performance than using individual rerankers. The rst reranking method used BM25, followed by the second reranking using neural models such as cross-encoder/ms-marco-MiniLM-L-12-v2, paraphrase-MiniLM-L6-v2, and others. The third stage involves rank fusion techniques such as BordaFUSE, Condorcet, and Weighted COMBSUM. Results show that the combination of reranking with neural rerankers signi cantly improves the effectiveness of the BM25 model, especially when using more advanced rank fusion techniques such as Weighted COMBSUM. This study suggests that aggregation of reranking results can overcome the weaknesses of individual rerankers and provide more consistent and effective results. This research paves the way for further exploration in model combination optimization for more accurate and ef cient information retrieval."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heidi Renata Halim
"Seiring dengan majunya teknologi di Indonesia, banyak layanan kesehatan online yang bermunculan. Pengguna bisa bertanya langsung pada tenaga medis profesional tiap mereka memiliki masalah kesehatan ringan yang tidak membutuhkan janji temu langsung dengan dokter. Sebagai pengguna, tentunya mereka mengharapkan respon yang cepat dari situs yang mereka gunakan, hal ini kedengarannya mustahil dilakukan karena tidak semua tenaga medis profesional yang bekerja pada layanan medis tersebut ada setiap saat memantau semua pertanyaan yang masuk. Namun, hal ini bisa dilakukan dengan cara mencocokan pertanyaan yang baru dimasukkan dan mencari pertanyaan yang sudah pernah ditanyakan di masa lalu yang memiliki persamaan dengan pertanyaan yang baru dimasukkan. Secara singkat, kita bisa mencari duplikat dari pertanyaan yang ditanyakan oleh pengguna dan mengembalikan jawaban dari pertanyaan duplikat tersebut daripada menunggu jawaban langsung dari dokter. Penelitian ini akan menggunakan pendekatan temu balik informasi dalam mendeteksi pertanyaan duplikat yang pernah ditanyakan di masa lalu. Selain itu, penelitian ini juga akan mengkombinasikan ekspansi kata yang dilakukan kepada kueri, dokumen, serta filter kata-kata stopword untuk meningkatkan skor reciprocal-rank dan recall dari model yang digunakan. Hasil penelitian ini menyimpulkan bahwa ekspansi kata yang dilakukan pada kueri serta dokumen tidak menghasilkan skor reciprocal rank dan recall yang lebih baik. Penggunaan word embedding untuk memperbanyak kata stopword yang dihapus dari data mampu menghasilkan skor reciprocal rank yang lebih tinggi meskipun nilainya belum signifikan.

With the advancement of technology and internet in Indonesia, many online healthcare services have emerged where users can directly consult with medical professionals if they have minor health issues that do not require an in-person appointment with a doctor. As users, they naturally expect quick responses from the sites they use. This seems impossible to do as not all medical professionals working who are working on these services are always available to monitor every incoming question. However, this can be achieved by matching newly submitted questions with previously asked questions that have similarities. In short, we can search for duplicates of the questions asked by users and return answers from those duplicate questions instead of waiting for a direct response from a doctor. This research will use an information retrieval approach to detect duplicate questions that have been asked in the past. Additionally, this study will combine query expansion, document expansion, and stopwords filtering to improve the reciprocal-rank and recall scores of the model used. This research concludes that query and document expansion do not yield better reciprocal rank and recall scores. On the other hand, using
word embedding to expand the stopwords list removed from the data can help achieve higher reciprocal rank scores, although the improvement displays are still not significant enough to be categorized as a major change."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febi Imanuela
"Perkembangan teknologi pada bidang kesehatan di Indonesia telah menghadirkan layanan konsultasi dengan dokter melalui forum tanya jawab kesehatan. Seiring dengan berjalannya waktu, muncul permasalahan pertanyaan duplikat pada forum. Permasalahan ini perlu ditangani agar dapat mempercepat proses pengembalian jawaban untuk keluhan yang serupa dan menjaga jumlah pertanyaan agar tetap scalable dengan kapasitas dokter penjawab. Namun, pertanyaan duplikat merupakan suatu tantangan tersendiri karena kompleksitas bahasa natural. Penelitian ini memanfaatkan pendekatan Information Retrieval untuk mengidentifikasi pasangan pertanyaan duplikat pada domain ini sebagai suatu pasangan query dan dokumen yang relevan. Setelah melakukan ranking awal menggunakan BM25 sebagai model baseline, performa hasil ranking ditingkatkan melalui proses re-ranking menggunakan model learning-to-rank LambdaMART yang berbasis fitur. Penelitian ini memanfaatkan fitur perhitungan jarak dan similaritas antara pasangan vektor representasi query dan dokumen, yang diperoleh dari model word embeddings dan transformer. Selain itu, diusulkan fitur scoring yang diperoleh dari model Cross Encoder, serta model BM25 yang menjadi model baseline. Penelitian ini juga mengusulkan fitur-fitur yang mempertimbangkan jumlah keywords gagasan utama query yang dikandung dokumen. Evaluasi eksperimen dilakukan menggunakan cross validation dan error analysis, dengan MRR sebagai metrik utama. Performa tertinggi yang dicapai eksperimen adalah MRR senilai 0,951 dengan p value senilai 0,016 yang signifikan terhadap baseline. Dengan demikian, penelitian ini menunjukkan dukungan empiris terhadap peningkatan efektivitas model re-ranking yang diusulkan untuk melakukan identifikasi otomatis terhadap karakteristik query dan dokumen yang relevan, yakni pasangan pertanyaan duplikat dalam konteks ini.

The development of technology in the healthcare sector in Indonesia has introduced consultation services with doctors through consumer health forums. Over time, the issue of duplicate questions on these forums emerged. This problem needs to be addressed to accelerate the response process for similar questions and to keep the number of questions scalable with the capacity of the responding doctors. However, duplicate questions present their own challenge due to the complexity of natural language. This study utilizes Information Retrieval approach to identify pairs of duplicate questions in this domain as query and relevant document pairs. After initial ranking using BM25 as the baseline model, the ranking performance is improved through a re-ranking process using the feature-based LambdaMART model. This study leverages features that calculate the distance and similarity between vector representations of the query and document, obtained from word embedding and transformer models. Additionally, scoring features derived from the Cross Encoder model and the BM25 baseline model are proposed. The study also suggests features that consider the number of main idea keywords from the query that is also contained within the document. Experiment evaluation is conducted using cross validation and error analysis, with Mean Reciprocal Rank (MRR) as the primary metric. The highest performance achieved in the experiments is an MRR of 0.951 with a p-value of 0.016, which is significant to the baseline. Thus, this study provides empirical support for the effectiveness of the proposed re-ranking model for automatic identification of the query and relevant document, specifically duplicate question pairs in this context."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ezra Pasha Ramadhansyah
"Sistem perolehan pertanyaan serupa diimplementasikan pada banyak situs tanya jawab, khususnya pada forum tanya jawab kesehatan. Implementasi dari sistem pencarian pertanyaan serupa dapat beragam seperti text based retriever dan neural ranker. Permasalahan utama dari neural ranker adalah kurangnya penelitian dalam bahasa indonesia untuk modelnya, khususnya untuk yang menggunakan BERT sebagai model untuk deteksi pertanyaan serupa. Pada penelitian ini akan dicari tahu sejauh apa neural re-ranker BERT dapat memperbaiki kualitas ranking dari text-based retriever jika diterapkan fine-tuning pada model. Model yang digunakan oleh penelitian berupa BERT dan test collection yang digunakan merupakan dataset forum kesehatan yang disusun oleh Nurhayati (2019). Untuk mengetahui sejauh mana model berbasis BERT dapat berguna untuk re-ranking, eksperimen dilakukan pada model pre-trained multilingualBERT, indoBERT, stevenWH, dan distilBERT untuk melihat model yang terbaik untuk di-fine-tune. Penelitian juga mengusulkan dua metode fine-tuning yakni attention mask filter dengan IDF dan freezed layer dengan melakukan freezing pada beberapa layer di dalam BERT. Model dan metode ini kemudian diuji pada beberapa skenario yang telah ditentukan. Hasil dari eksperimen menunjukkan bahwa re-ranker dapat meningkatkan kualitas text based retriever bila di-fine-tune dengan metode dan skenario tertentu.
Beberapa model memberikan hasil yang lebih baik dengan dataset forum kesehatan dan dengan text based retriever BM25 dan TF-IDF. Model multilingualBERT dan metode fine-tuning layer freezing memberikan hasil yang terbaik dari semua kombinasi. Kenaikan tertinggi terdapat pada kombinasi BM25 dan multilingualBERT dengan layer freezing dengan kenaikan sebesar 0.051 dibandingkan BM25.

The system of acquiring similar questions is implemented on many Question and Answering sites, including health forums. Implementations of similar question search systems can vary, such as text-based retrievers and neural rankers. The main issue with neural rankers is the lack of research in Indonesian language for neural ranker models, especially those using BERT. This study aims to investigate how far BERT as a neural re-ranker can improve the ranking quality of a text-based retriever when applied with fine-tuning. The model used in this research is BERT, and the test collection used is a health forum dataset compiled by Nurhayati (2019). To answer the research question, experiments were conducted on multiple pre-trained models: multilingual BERT, IndoBERT, stevenWH, and distilBERT to identify the best model for fine-tuning. This study also proposes two new fine-tuning methods: attention mask filter with IDF threshholding and frozen layer by freezing some layers within BERT. These models and methods were then tested under predefined scenarios. The experiment results show that the re-ranker can enhance the quality of the text-based retriever when fine-tuned with specific methods and scenarios. These models perform especially well using the health form dataset aswell as using the text based retrievers BM25 and TF-IDF. Out of all models, multilingulBERT performed the best with freezed layer fine-tuning performing as the best fine-tuning method. The most significant increase of all combinations is the combination of BM25 and multilingualBERT with freezed layer fine-tuning with a 0.051 increase compared to the baseline BM25."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rani Aulia Hidayat
"Makanan merupakan salah satu kebutuhan penting bagi masyarakat, sehingga pencarian mengenai informasi yang berkaitan dengan makanan banyak dilakukan. Sering kali informasi yang dibutuhkan adalah informasi spesifik yang dapat direpresentasikan sebagai entitas. Sehingga saat seseorang melakukan pencarian menggunakan suatu kueri, hasil yang diharapkan dari proses pencarian tersebut berupa entitas yang relevan. Sistem yang dapat menangani tugas tersebut disebut sebagai sistem temu balik entitas.
Penelitian ini bertujuan untuk membangun sistem temu balik entitas makanan dengan memanfaatkan informasi relasi antar entitas, teknik ekstraksi entitas, document retrieval, dan word embedding pada korpus dokumen berbahasa Indonesia. Dokumen yang digunakan pada penelitian ini adalah dokumen resep, artikel terkait informasi kuliner, dan Wikipedia berbahasa Indonesia. Sebanyak tujuh kategori entitas terkait makanan didapatkan dari proses ekstraksi entitas.
Pendekatan rule-based dan lexicon-based digunakan untuk mengekstrak entitas dari dokumen. Aturan-aturan untuk pendekatan rule-based dibangun untuk masing-masing jenis dokumen berdasarkan sampel dokumen yang dipilih secara acak. Sebanyak tiga skenario eksperimen diujikan terhadap 14 kueri yang dikelompokkan ke dalam tujuh kategori. Setiap skenario dievaluasi menggunakan nilai rata-rata precision berdasarkan k entitas yang dikembalikan (AP@k).
Berdasarkan hasil evaluasi menggunakan seluruh kueri uji, skenario ketiga dengan menggunakan informasi relasi entitas menunjukkan performa terbaik dibandingkan dengan skenario lainnya. Nilai AP@15 tertinggi yang didapatkan menggunakan skenario eksperimen ketiga ini adalah sebesar 76,67% untuk kategori kueri hidangan dengan bahan dasar tertentu.

Food is known as one of the most important needs so that many people search for food-related information. The information that is needed is often specific information that can be represented as an entity. So that when someone performs a search from a certain query, the expected results are entities that are considered relevant. The task to solve this problem is known as entity retrieval.
This research aims to build a food entity retrieval model by utilizing information on relationships between entities, entity extraction techniques, document retrieval, and word embedding in the Indonesian document corpus. The documents used in this research are recipes, food-related articles, and articles of Wikipedia in Indonesian. A total of seven food-related categories of entities were obtained from the entity extraction process.
The approaches that are used in this study to extract entities from the documents are the rule-based and lexicon-based approaches. The rules in the rule-based approach are developed for each document category based on the sample documents that have been chosen randomly. The three experiments that were conducted were tested against 14 queries which were grouped into seven categories. Each scenario is evaluated using the average precision score based on k entities given as the result of entity retrieval (AP@k).
Based on the evaluation results using all the test queries, the third scenario that used entity-relationship information shows the best performance compared to other scenarios. The highest AP@15 value obtained when using this third experimental scenario is 76.67% for the query category dish based on certain ingredients.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Ravi Shulthan Habibi
"Sistem tanya jawab merupakan salah satu tugas dalam domain natural language processing (NLP) yang sederhananya bertugas untuk menjawab pertanyaan sesuai konteks yang pengguna berikan ke sistem tanya jawab tersebut. Sistem tanya jawab berbahasa Indonesia sebenarnya sudah ada, namun masih memiliki performa yang terbilang kurang baik. Penelitian ini bereksperimen untuk mencoba meningkatkan performa dari sistem tanya jawab berbahasa Indonesia dengan memanfaatkan natural language inference (NLI). Eksperimen untuk meningkatkan sistem tanya jawab berbahasa Indonesia, penulis menggunakan dua metode, yaitu: intermediate-task transfer learning dan task recasting sebagai verifikator. Dengan metode intermediate-task transfer learning, performa sistem tanya jawab berbahasa Indonesia meningkat, hingga skor F1-nya naik sekitar 5.69 dibandingkan tanpa menggunakan pemanfaatan NLI sama sekali, dan berhasil mendapatkan skor F1 tertinggi sebesar 85.14, namun, peningkatan performa dengan metode intermediate-task transfer learning cenderung tidak signifikan, kecuali pada beberapa kasus khusus model tertentu. Sedangkan dengan metode task recasting sebagai verifikator dengan parameter tipe filtering dan tipe perubahan format kalimat, performa sistem tanya jawab berbahasa Indonesia cenderung menurun, penurunan performa ini bervariasi signifikansinya. Pada penelitian ini juga dilakukan analisis karakteristik pasangan konteks-pertanyaan-jawaban seperti apa yang bisa dijawab dengan lebih baik oleh sistem tanya jawab dengan memanfaatkan NLI, dan didapatkan kesimpulan bahwa: performa sistem tanya jawab meningkat dibandingkan hasil baseline-nya pada berbagai karakteristik, antara lain: pada tipe pertanyaan apa, dimana, kapan, siapa, bagaimana, dan lainnya; kemudian pada panjang konteks ≤ 100 dan 101 ≤ 150; lalu pada panjang pertanyaan ≤ 5 dan 6 ≤ 10; kemudian pada panjang jawaban golden truth ≤ 5 dan 6 ≤ 10; lalu pada keseluruhan answer type selain law dan time; terakhir pada reasoning type WM, SSR, dan MSR.

The question-answering system is one of the tasks within the domain of natural language processing (NLP) that, in simple terms, aims to answer questions based on the context provided by the user to the question-answering system. While there is an existing Indonesian question-answering system, its performance is considered somewhat inadequate. This research conducts experiments to improve the performance of the Indonesian question answering system by utilizing natural language inference (NLI). In order to enhance the Indonesian question-answering system, the author employs two methods: intermediate task transfer learning and task recasting as verifiers. Using the intermediate-task transfer learning method, the performance of the Indonesian question-answering system improves significantly, with an increase of approximately 5.69 in F1 score compared to not utilizing NLI at all, achieving the highest F1 score of 85.14. However, the performance improvement with the intermediate-task transfer learning method tends to be non-significant, except in certain specific cases and particular models. On the other hand, employing the task recasting method as a verifier with filtering parameter type and sentence format change type leads to a decline in the performance of the Indonesian question-answering system, with the significance of this performance decrease varying. Additionally, this research conducts an analysis on the characteristics of context-question-answer pairs that can be better answered by the question-answering system utilizing NLI. The findings conclude that the question-answering system’s performance improves compared to its baseline across various characteristics, including different question types such as what, where, when, who, how, and others. Furthermore, it improves with context lengths ≤ 100 and 101 ≤ 150, question lengths ≤ 5 and 6 ≤ 10, as well as answer lengths (golden truth) ≤ 5 and 6 ≤ 10. Additionally, it performs better in overall answer types excluding law and time, and lastly, in reasoning types WM, SSR, and MSR.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Ilmu Komputer Universitas Indonesia, 1995
S26896
UI - Skripsi Membership  Universitas Indonesia Library
cover
P. Iksam Widjaja
"Perkembangan teknologi komunikasi sangat berpengaruh dalam kegiatan bisnis pada saat ini. Teknologi komunikasi khususnya teknologi komunikasi data sangat membantu dalam menunjang kegiatan bisnis suatu organisasi. Dalam mencapai tujuan bisnisnya, suatu organisasi bisnis mti:manfaatkan teknologi komunikasi sebagai sarana pendukung. Teknologi komunikasi telah memungkinkan unit-unit bisnis sating berinteraksi, berkomunikasi dengan mudah. Teknologi komunikasi khususnya teknologi komunikasi data memungkinkan dilakukan penyebaran informasi secara cepat dan akurat. Teknologi komunikasi memungkinkan kegiatan bisnis baru diciptakan. Penerapan teknologi dalam suatu orgarusas1 bisnis memerlukan perencanaan yang matang, sehingga penggunaan teknologi tersebut nantinya benar-benar memenuhi kebutuhan serta manfaatnya bagi kegiatan organisasi bisnis tersebut. Dalam implementasi penggunan teknologi komunikasi di suatu organisasi bisnis sering terjadi bahwa sistem jaringan komunikasi yang dibangun tidak dapat memenuhi kebutuhan bisnisnya. Dalarn tesis 1ru, penulis akan melakukan studi kasus perencanaan infrastruktur jaringan komunikasi untuk mendukung kegiatan bisnis mikro di PT. Bank Rakyat Indonesia (Persero) atau selanjutnya disebut BRI. Sesuai dengan bisnisnya, kegiatan bisnis mikro di BRI memiliki karakteristik yang agak berbeda dibandingkan dengan kegiatan bisnis bank pada umumnya. Karakteristik bisnis mikro dapat dilihat dari segi :
• Ukuran transaksi bisnis ini yang relatifkecil tetapi jumlahnya banyak.
• Kegiatan bisnis mikro berorientasi pada segmen sektor ekonomi kecil.
• Kegiatan bisnis mikro di BRI sebagian bes.ar berada di rural area, mulai dari tingkat kecarnatan sampai tingkat desa di seluruh Indonesia . . Mengingat karakteristik bisnis mikro tersebut, diperlu-kan perencanaan yang baik dalam membangun jaringan komunikasi11.ya. Dengan perencanaan yang baik ini diharapkan akan didapatkan jaringan komunikasi yang benar-benar sesuai dengan kebutuhan serta kegiatan bisnisnya yang selanjutnya diharapkan akan memberikan kontribusi pada keuntungan bisnisnya.

Today the business activity 1s m line with the development of the technology itself In some cases the technology support is mandatory, in order to respond customer needs and compete with the other services. Communication technology especially in data communication technology, is one of the key support for business activity in the organization. This technology enabled business units to interact each other in the simple and easy ways. Data communication technology has enabled distribute informations faster dan more acurate. In this thesis, the author will take the case study of the network infrastructure planning for supporting micro banking business in the PT. Bank Rakyat Indonesia (Persero). According to the BRI's environment, the micro banking business activity have different characteristics of the ordinary banking activity. The characteristics of the micro banking business as follows :
• The size of the business transaction is relatively small but the quantity of transaction is large.
• The orientations of the micro banking activity is in the small market segment.
• The most micro banking activity is on the rural area, from the level kecamatan area until desa of all Indonesia regions.
According to that characteristics of the micro banking business, we need to plan for building a communication networks which spans to the rural area. Unfortunately the public telecommunication infrastructure in the remote area is very poor or it is not existed yet. In BRI case, trying to develop and invest in setting up the tlecommunication network reaching remote area is one of the critical success factor for micro banking business. The good planning will protect .the investment in the communication network that fi,1 the need of the business activity. We start the micro business network plan with a hierarchical network plan. In this plan, we explore the possibility of using cost effective technology to implement data communication network such as dial ;Jp link, packet radio network, etc. We identify and propose scheme for integrating micro business network with corporate and retail network.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2000
T40240
UI - Tesis Membership  Universitas Indonesia Library
cover
Janoe Hendarto
"ABSTRAK
Geometri Fraktal adalah metode untuk merepresentasikan objek-objek yang muncul di alam. Untuk lebih memahami geometri fraktal, dipelajari beberapa pola fraktal. Pola fraktal selain banyak ditemukan di alam, juga muncul di dalam ekspresi fenomena matematik antara lain pada batas-batas daerah konvergensi pada metode iterasi Newton. Himpunan Julia adalah fraktal yang muncul dari suatu iterasi fungsi analitik dan pada himpunan Julia inilah kelakuan kaotik atau Chaos sering muncul.
Pada tulisan in i, dibahas tentang prinsip-prinsip dasar himpunan Julia dan Chaos, yang kemudian digunakan dalam penelitian grafika komputer untuk menyelidiki cekungan atraksi ( basins of attraction ) dan himpunan Julia serta chaos dari transformasi Newton untuk beberapa fungsi polinomial berharga kompleks. Juga diberikan beberapa metode dan hasil penggambaran himpunan Julia dari transformasi Newton untuk fungsi polinomial tersebut."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1992
T40117
UI - Tesis Membership  Universitas Indonesia Library
cover
Eko Sediyono
"ABSTRAK
Pengurutan merupakan proses penting yang banyak
digunakan untuk membantu pembuatan laporan sehingga
diperoleh data urut dan mudah dibaca, disamping itu juga
digunakan sebagai sarana (tools) untuk eksekusi algoritme
yang lebih kompleks.
Kebutuhan pengolahan data dan informasi yang lebih
cepat semakin dirasakan perlu. Penggunaan prosesor cepat
pun kadang-kadang masih belum cukup. Untuk memenuhi
kebutuhan tersebut, implementasi pada komputer paralel
dilakukan.
Tesis ini bertujuan untuk mengkaji implementasi
pengurutan eksternal paralel pada jaringan komputer
dengan sarana perangkat lunak PVM (Parallel Virtual
Machine). Keuntungan implementasi pada PVM adalah tidak
perlu mengadakan perangkat keras paralel, karena PVM
mampu memanfaatkan jaringan komputer heterogen yang sudah
ada sebagai suatu sistem komputer paralel. Jaringan
komputer yang dipakai terdiri dari lima stasiun kerja SUN
SPARC Station 1+ yang dihubungkan melalui protokol TCP/IP
Ethernet dengan topologi jaringan bus.
Lambatnya message passing pada jaringan komputer yang
dipakai berhasil dikurangi pengaruhnya dengan mengatur
ukuran paket yang dikirim. Keserialan jalur I/O diatasi
dengan menghubungkan tiap prosesor dengan satu cakramnya
sendiri, sehingga akses bersama terhadap satu cakram
dikurang i. Dengan perbaikan tersebut, speedup maksimum
yang diperoleh dengan konfigurasi lima prosesor dan
variasi data antara 5000 sampai dengan 25000 rekor adalah
3,6 dan efisiensinya 71,12 %. Data yang digunakan
berstruktur rekor, yang terdiri dari tiga field alpha
numerik dengan panjang 50 bytes/rekor.
"
1994
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>