Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183274 dokumen yang sesuai dengan query
cover
Muhammad Hanif Pramudya Zamzami
"Penalaran deduktif adalah suatu metode berpikir logis di mana seseorang menarik kesimpulan spesifik (hipotesis) berdasarkan premis atau pernyataan umum yang dianggap benar dengan menerapkan aturan inferensi logika. Aturan inferensi logika adalah prinsip-prinsip logika yang memungkinkan seseorang untuk mengambil hipotesis yang absah dari premis yang diberikan. Meskipun penalaran deduktif memiliki keunggulan pada penalaran yang absah, manusia cenderung membuat kesalahan dalam bernalar deduktif. Salah satu model bahasa untuk penalaran deduktif adalah Natural Logic (NatLog), yaitu model berbasis machine learning yang dilatih untuk melakukan klasifikasi kelas dari hubungan persyaratan antar kalimat. Namun, model memiliki keterbatasan pada rentang kalimat yang panjang. Di sisi lain, Large Language Model (LLM) seperti Generative Pre-trained Transformer (GPT) telah menunjukkan performa yang baik dalam tugas penalaran deduktif, terutama dengan menggunakan metode Chain of Thought (CoT). Namun, metode CoT masih menimbulkan masalah halusinasi dan inkonsistensi dari langkah perantaranya, yang berujung pada konklusi akhir yang tidak absah. Metode Chain of Thought - Self-Consistency (CoT-SC) merupakan pengembangan dari metode CoT yang bertujuan untuk meningkatkan kemampuan penalaran pada LLM. Dalam metode CoT-SC, CoT dijalankan beberapa kali untuk menghasilkan beberapa sampel jawaban. Setelah itu, dilakukan operasi modus, yaitu pemilihan jawaban yang paling sering muncul di antara sampel-sampel yang dihasilkan, untuk menentukan jawaban akhir. Jawaban dengan frekuensi kemunculan terbanyak dianggap sebagai jawaban yang paling konsisten dan akurat. Tujuan dari penelitian ini adalah untuk mengimplementasikan dan menganalisis kemampuan metode CoT-SC pada model GPT dalam menyelesaikan tugas penalaran deduktif. Penelitian ini akan mengevaluasi kemampuan penalaran deduktif pada model GPT menggunakan tiga sumber data yang merepresentasikan tiga domain tugas penalaran deduktif yang berbeda, yaitu ProntoQA, ProofWriter, dan FOLIO. Setelah itu, akan dilakukan analisis perbandingan performa LLM berbasis metode CoT-SC dengan manusia dalam menyelesaikan tugas penalaran deduktif. Hasil penelitian menunjukkan bahwa metode CoT-SC menunjukkan performa akurasi yang baik dalam mayoritas tugas penalaran deduktif serta LLM GPT dengan metode CoT-SC mengungguli 1 dari 3 domain tugas penalaran deduktif. Hasil ini menunjukkan model GPT berbasis metode CoT-SC memiliki potensi dalam tugas penalaran deduktif.

Deductive reasoning is a method of logical thinking in which one draws specific conclusions (hypotheses) based on general premises or statements that are considered true by applying the rules of logical inference. Rules of logical inference are principles of logic that allow one to derive valid hypotheses from given premises. Although deductive reasoning has the advantage of valid reasoning, humans tend to make mistakes in deductive reasoning. One of the language models for deductive reasoning is Natural Logic (NatLog), which is a machine learning-based model trained to perform class classification of conditional relations between sentences. However, the model has limitations on long sentence ranges. On the other hand, Large Language Models (LLMs) such as Generative Pre-trained Transformer (GPT) have shown good performance in deductive reasoning tasks, especially by using the Chain of Thought (CoT) method. However, the CoT method still raises the problem of hallucinations and inconsistencies of the intermediate steps, leading to invalid final conclusions. The Chain of Thought - Self-Consistency (CoT-SC) method is a development of the CoT method that aims to improve reasoning ability in LLM. In the CoT-SC method, CoT is run several times to produce several sample answers. After that, a mode operation is performed, which is the selection of the most frequently occurring answer among the generated samples, to determine the final answer. The answer with the highest frequency of occurrence is considered the most consistent and accurate answer. The purpose of this study is to implement and analyze the ability of the CoT-SC method on the GPT model in solving deductive reasoning tasks. This study will evaluate the deductive reasoning ability of the GPT model using three data sources representing three different deductive reasoning task domains, namely ProntoQA, ProofWriter, and FOLIO. After that, a comparative analysis of the performance of LLM based on the CoT-SC method with humans in solving deductive reasoning tasks. These results indicate the GPT model based on the CoT-SC method has a potential in deductive reasoning tasks."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fransisco William Sudianto
"Perkembangan LargeLanguageModel (LLM) terjadisecaracepatdanmengalami kemajuanyangsignifikan.HalinimendorongpenggunaandanpemanfaatanLLM pada berbagaibidang.Disisilain, KnowledgeGraph (KG) menyediakancarayang terstruktur danbermaknauntukmenyimpaninformasi.KGsudahbanyakdigunakan secara luasdiberbagaiaplikasi,sepertimesinpencari,sistemrekomendasi,dansistem penjawabpertanyaan.SalahsatupemanfaatanLLMdanKGyangmasihjarangadalah pada bidangjurnalistik,khususnyauntukmenganalisisdanmemvisualisasikanberita. Penelitian inibertujuanuntukmengembangkanalatekstraksiinformasiyangefisien, akurat, daninteraktifuntukmenganalisisteksberitamenggunakanpendekatangabungan antara LLMdanKG.Metodeinimenggabungkankeunggulankeduatekniktersebut untuk meningkatkanpemahamandanekstraksiinformasidariteksberitayangkompleks. Tujuannyaadalahagarpembacadapatmemahamiinformasiyangterdapatpadateks berita denganlebihinteraktif.PenulismemanfaatkanLLMyangtelahterlatihsecara luas dalammemahamidanmenghasilkanteksuntukmengidentifikasiinformasipenting dalam teksberita,sepertientitas,sentimen,kutipan,relasiantarentitas,danunsur5W1H (Who, What, Where, When, Why, How), urutankronologiskejadian,danhubungan bagian-keseluruhan(mereology) dalamteksberita.Untukmengekstraksiinformasiterse- but, prompt dimodifikasi denganmenggunakanpendekatan one-shot-prompting untuk memberikan konteksdancontohkepadaLLMdalammemahamiteksberita.Kemudian, informasi yangdiekstraksidivisualisasikandalambentukKGyangmerepresentasikan pengetahuan terstrukturtentangentitasdanhubungannyadidalamteks.Selainitu, penelitian melibatkanpembuatansebuahwebsiteyangakanmenyediakanantarmuka untuk sistemagarpenggunadapatmelakukananalisisteksberitasecaralangsungdan interaktif. Evaluasiutamayangdilakukanpadapenelitianiniadalahmengukurakurasi jawabanyangdihasilkanolehLLMpadasetiapbagianinformasiyangdiekstraksi dan bagaimanavisualisasiKGyangbaikuntukinformasiyangdidapat.Penelitianini menunjukkan bahwaLLMmampumengekstraksiinformasiyangdiinginkandengan cukup akuratdanvisualisasiKGdapatmenyajikaninformasidenganlebihinteraktif dan mudahdimengerti.PenelitianinitelahmenunjukkanbahwaLLMdanKGdapat dimanfaatkansebagaialatekstraksidanvisualisasiinformasiyangadapadateksberita.

The developmentoftheLargeLanguageModel(LLM)israpidlyoccurringandex- periencing significantprogress.ThisencouragestheuseandutilizationofLLMin variousfields.Ontheotherhand,KnowledgeGraph(KG)providesastructuredand meaningful waytostoreinformation.KGhasbeenwidelyusedinvariousapplications, such assearchengines,recommendationsystems,andquestionansweringsystems. One utilizationofLLMandKGthatisstillrarelyusedisinthefieldofjournalism, especially foranalyzingandvisualizingnews.Thisresearchaimstodevelopaneffective, interactive,andaccurateinformationextractiontoolforanalyzingnewstextsusing a combinedapproachbetweenLLMandKG.Thismethodcombinestheadvantages of bothtechniquestoimprovetheunderstandingandextractionofinformationfrom complexnewstexts.Thegoalisforreaderstounderstandtheinformationcontainedin the newstextinteractively.TheauthorutilizesLLMswhohavebeenextensivelytrained in understandingandgeneratingtextstoidentifyimportantinformationinnewstexts, such asentities,sentiments,quotes,relationsbetweenentities,and5W1H(Who,What, Where, When,Why,How),chronologicalorderofevents,andpart-wholerelationships (mereology) elementsinnewstexts.Toextractthatinformation,thepromptwasmodified by usingaone-shot-promptingapproachtoprovidecontextandexamplestoLLMsin understanding thenewstext.Then,theextractedinformationisusedtobuildaKGthat represents structuredknowledgeaboutentitiesandrelationshipsinthetext.Inaddition, the developmentplaninvolvescreatingawebsitethatwillprovideaninterfaceforthis system toallowuserstoperformliveandinteractivenewstextanalysis.Themain evaluationconductedinthisresearchistomeasuretheaccuracyoftheanswersgenerated by LLMoneachpieceofinformationextractedandhowgoodKGvisualizationisfor the informationobtained.ThisresearchshowsthatLLMisabletoextractthedesired information quiteaccuratelyandKGvisualizationcanpresentinformationinamore interactiveandeasytounderstandmanner.ThisresearchhasshownthatLLMandKG can beusedasinformationextractionandvisualizationtoolsinnewstexts."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tulus Setiawan
"Indonesia merupakan salah satu negara yang sempat terimbas COVID-19. Hal itu berdampak pada sektor pariwisata, khususnya industri perhotelan di Indonesia. Meskipun begitu, sekarang sektor pariwisata di Indonesia mulai pulih kembali, khususnya untuk industri perhotelan. Badan Pusat Statistik (BPS) mencatat bahwa pada tahun 2023, tingkat penghunian kamar (TPK) hotel bintang bahkan mengalami kenaikan dibandingkan dengan tahun 2022, kenaikan hotel bintang mencapai 51,12%. Dengan meningkatnya permintaan terhadap tingkat hunian hotel, ulasan yang diberikan oleh pelanggan terhadap hotel menjadi hal yang penting untuk dianalisis. Salah satu jenis analisis yang dapat dilakukan terhadap ulasan-ulasan tersebut adalah analisis sentimen untuk mengklasifikasi sentimen yang terkandung dalam ulasan ke dalam kelompok-kelompok sentimen tertentu. Walaupun model-model deep learning seperti Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU) atau bahkan model hybrid dan fully-connected layer neural network dengan representasi Bidirectional Encoder Representations from Transformers (BERT) terbukti menghasilkan kinerja yang baik dalam melakukan analisis sentimen, tetapi beberapa masalah yang umumnya dihadapi adalah fleksibilitas, efisiensi waktu, dan sumber daya yang dibutuhkan dalam penggunaannya. Oleh sebab itu, metode GPT berbasis prompt dapat menjadi salah satu solusi untuk permasalahan tersebut. Dengan menggunakan GPT berbasis prompt, pengguna dapat langsung memanfaatkan pengetahuan dan pemahaman bahasa yang telah diperoleh model GPT selama proses pelatihan pada korpus teks yang sangat besar. Hal ini memungkinkan model untuk menghasilkan prediksi sentimen yang akurat tanpa perlu melalui proses pelatihan yang panjang dan kompleks. Penelitian ini menganalisis dan membandingkan kinerja Large Language Model BERT dan GPT sebagai metode untuk analisis sentimen berbahasa Indonesia. Hasil Penelitian menunjukkan bahwa rata-rata kinerja model GPT secara keseluruhan lebih unggul dibandingkan model BERT dengan fully-connected layer neural network (BERT-NN) untuk dataset tiket.com, PegiPegi, dan Traveloka. Secara spesifik, model GPT dengan pendekatan zero-shot memiliki rata-rata kinerja yang paling unggul dibandingkan dengan pendekatan one-shot dan few-shot. Untuk rata-rata kinerja terhadap ketiga dataset tersebut, GPT dengan pendekatan zero-shot memberikan peningkatan sebesar 1,28%, 1,45%, dan 6,2% untuk metrik akurasi, F1-score, dan sensitivity secara berurutan terhadap kinerja BERT-NN. Hasil ini menunjukkan potensi metode GPT berbasis prompt sebagai alternatif yang efisien dan fleksibel secara penggunaan untuk analisis sentimen pada ulasan hotel berbahasa Indonesia.

Indonesia was one of the countries affected by COVID-19. This impacted the tourism sector, particularly the hotel industry in Indonesia. However, the tourism sector in Indonesia is now beginning to recover, especially for the hotel industry. The Central Statistics Agency (BPS) recorded that in 2023, the occupancy rate of star-rated hotels even increased compared to 2022, with the increase reaching 51.12%. With the rising demand for hotel occupancy rates, customer reviews of hotels have become important to analyze. One type of analysis that can be performed on these reviews is sentiment analysis to classify the sentiments contained in the reviews into specific sentiment groups. Although deep learning models such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), or even hybrid models and fully-connected layer neural networks with Bidirectional Encoder Representations from Transformers (BERT) representation have been proven to produce good performance in sentiment analysis, some common problems faced are flexibility, time efficiency, and resources required for their use. Therefore, prompt-based GPT methods can be a solution to these problems. By using prompt-based GPT, users can directly leverage the knowledge and language understanding that the GPT model has acquired during training on a vast text corpus. This allows the model to generate accurate sentiment predictions without going through a long and complex training process. This study analyzes and compares the performance of BERT and GPT Large Language Models as methods for Indonesian language sentiment analysis. The results show that the average overall performance of the GPT model is superior to the BERTmodel with a fully-connected layer neural network (BERT-NN) for datasets from tiket.com, PegiPegi, and Traveloka. Specifically, the GPT model with a zero-shot approach has the most superior average performance compared to the one-shot and few-shot approaches. For the average performance across these three datasets, GPT with a zero-shot approach provides improvements of 1.28%, 1.45%, and 6.2% for accuracy, F1-score, and sensitivity metrics, respectively, compared to BERT-NN performance. These results demonstrate the potential of prompt-based GPT methods as an efficient and flexible alternative for sentiment analysis on Indonesian language hotel reviews."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fikri Aufaa Zain
"Dalam beberapa tahun terakhir, teknologi chatbot telah berkembang secara signifikan, dengan munculnya Large Language Model (LLM) seperti GPT dari OpenAI, Llama dari Meta, dan Gemini dari Google. Penelitian ini mengeksplorasi penerapan chatbot berbasis LLM dalam dunia medis, khususnya untuk membantu dan memantau pasien hemodialisis. Menggunakan kerangka kerja seperti LangChain untuk melakukan prompt engineering, Retrieval Augmented Generation (RAG) untuk meningkatkan pengetahuan domain, dan Chroma sebagai vector database, platform chatbot berbasis web dikembangkan. Pendekatan ReAct dan chain-of-thought (CoT) diterapkan untuk membuat sistem berbasis agen. Evaluasi kuantitatif dari penelitian ini akan menggunakan ROUGE, BLEU, dan SAS untuk sistem chatbot, dan MAP@3, dan MRR@3 digunakan untuk sistem RAG, bersama dengan penilaian kualitatif oleh ahli di bidang hemodialisis. Secara keseluruhan, evaluasi kualitatif dan kuantitatif untuk setiap sistem menerima umpan balik positif berdasarkan penilaian ahli dan hasil dari setiap metrik, yang menunjukkan bahwa kedua sistem berkinerja baik dalam menghasilkan tanggapan yang selaras dengan tujuan penelitian ini, yaitu memberikan tanggapan yang akurat dan membantu dalam memantau pasien. Dari sisi sistem, kemampuan chatbot dan sistem RAG dalam memahami konteks percakapan dan memberikan tanggapan yang lebih relevan dan informatif, menggunakan pendekatan berbasis agen yang ditingkatkan oleh RAG, memberikan keuntungan yang signifikan. Prompt yang kami gunakan, ReAct dan CoT, memungkinkan agen berbasis LLM untuk berpikir lebih efektif, membuat keputusan yang tepat, dan mensimulasikan proses berpikir yang lebih terstruktur dan logis. Dengan memanfaatkan peningkatan ini, chatbot juga dapat menghasilkan pesan urgensi medis untuk memperingatkan tim medis yang terhubung ke platform. Hal ini memungkinkan mereka untuk merespons keadaan darurat ketika pasien melaporkan gejala yang membutuhkan perawatan lebih lanjut di rumah sakit. Penelitian ini telah menunjukkan bahwa LLM dapat digunakan secara efektif sebagai chatbot di bidang kesehatan, khususnya untuk memantau pasien hemodialisis.

In recent years, chatbot technology has advanced significantly, with the rise of Large Language Models (LLMs) such as OpenAI’s GPT, Meta’s Llama, and Google’s Gemini. This research explores the application of LLM-based chatbots in healthcare, specifically for assisting and monitoring hemodialysis patients. Using frameworks like LangChain for prompt engineering, Retrieval Augmented Generation (RAG) for enhanced domain knowledge, and Chroma as a vector database, a web-based chatbot platform was developed. The ReAct and chain-of-thought (CoT) approaches were applied to create an agent-based system. The quantitative evaluation of this research will use ROUGE, BLEU, and SAS for the chatbot system, and MAP@3, and MRR@3 were used for the RAG systems, along with qualitative expert assessments. Overall, the qualitative and quantitative evaluations for each system received positive feedback based on expert judgment and the results of each metrics, indicating that both systems performed well in generating responses aligned with the goals of this research, which are to provide accurate responses and assist in monitoring patients. On the system side, the chatbot and RAG system’s ability to understand conversational context and provide more relevant and informative responses, using agent-based approaches enhanced by RAG, offers a clear advantage. The prompts we are using, ReAct and CoT, enable the agent-based LLM to think more effectively, make appropriate decisions, and simulate a more structured and logical thought process. By utilizing these enhancements, the chatbot can also generate medical urgency message to alert medical teams connected to the platform. This allows them to respond to emergencies when patients report symptoms that require further care at a hospital. This research has demonstrated that LLMs can be effectively utilized as chatbots in the healthcare field, specifically for monitoring hemodialysis patients."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhin Abdallah Muhammad Sidik
"Dalam beberapa tahun terakhir, teknologi chatbot telah berkembang secara signifikan, dengan munculnya Large Language Model (LLM) seperti GPT dari OpenAI, Llama dari Meta, dan Gemini dari Google. Penelitian ini mengeksplorasi penerapan chatbot berbasis LLM dalam dunia medis, khususnya untuk membantu dan memantau pasien hemodialisis. Menggunakan kerangka kerja seperti LangChain untuk melakukan prompt engineering, Retrieval Augmented Generation (RAG) untuk meningkatkan pengetahuan domain, dan Chroma sebagai vector database, platform chatbot berbasis web dikembangkan. Pendekatan ReAct dan chain-of-thought (CoT) diterapkan untuk membuat sistem berbasis agen. Evaluasi kuantitatif dari penelitian ini akan menggunakan ROUGE, BLEU, dan SAS untuk sistem chatbot, dan MAP@3, dan MRR@3 digunakan untuk sistem RAG, bersama dengan penilaian kualitatif oleh ahli di bidang hemodialisis. Secara keseluruhan, evaluasi kualitatif dan kuantitatif untuk setiap sistem menerima umpan balik positif berdasarkan penilaian ahli dan hasil dari setiap metrik, yang menunjukkan bahwa kedua sistem berkinerja baik dalam menghasilkan tanggapan yang selaras dengan tujuan penelitian ini, yaitu memberikan tanggapan yang akurat dan membantu dalam memantau pasien. Dari sisi sistem, kemampuan chatbot dan sistem RAG dalam memahami konteks percakapan dan memberikan tanggapan yang lebih relevan dan informatif, menggunakan pendekatan berbasis agen yang ditingkatkan oleh RAG, memberikan keuntungan yang signifikan. Prompt yang kami gunakan, ReAct dan CoT, memungkinkan agen berbasis LLM untuk berpikir lebih efektif, membuat keputusan yang tepat, dan mensimulasikan proses berpikir yang lebih terstruktur dan logis. Dengan memanfaatkan peningkatan ini, chatbot juga dapat menghasilkan pesan urgensi medis untuk memperingatkan tim medis yang terhubung ke platform. Hal ini memungkinkan mereka untuk merespons keadaan darurat ketika pasien melaporkan gejala yang membutuhkan perawatan lebih lanjut di rumah sakit. Penelitian ini telah menunjukkan bahwa LLM dapat digunakan secara efektif sebagai chatbot di bidang kesehatan, khususnya untuk memantau pasien hemodialisis.

In recent years, chatbot technology has advanced significantly, with the rise of Large Language Models (LLMs) such as OpenAI’s GPT, Meta’s Llama, and Google’s Gemini. This research explores the application of LLM-based chatbots in healthcare, specifically for assisting and monitoring hemodialysis patients. Using frameworks like LangChain for prompt engineering, Retrieval Augmented Generation (RAG) for enhanced domain knowledge, and Chroma as a vector database, a web-based chatbot platform was developed. The ReAct and chain-of-thought (CoT) approaches were applied to create an agent-based system. The quantitative evaluation of this research will use ROUGE, BLEU, and SAS for the chatbot system, and MAP@3, and MRR@3 were used for the RAG systems, along with qualitative expert assessments. Overall, the qualitative and quantitative evaluations for each system received positive feedback based on expert judgment and the results of each metrics, indicating that both systems performed well in generating responses aligned with the goals of this research, which are to provide accurate responses and assist in monitoring patients. On the system side, the chatbot and RAG system’s ability to understand conversational context and provide more relevant and informative responses, using agent-based approaches enhanced by RAG, offers a clear advantage. The prompts we are using, ReAct and CoT, enable the agent-based LLM to think more effectively, make appropriate decisions, and simulate a more structured and logical thought process. By utilizing these enhancements, the chatbot can also generate medical urgency message to alert medical teams connected to the platform. This allows them to respond to emergencies when patients report symptoms that require further care at a hospital. This research has demonstrated that LLMs can be effectively utilized as chatbots in the healthcare field, specifically for monitoring hemodialysis patients."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Nur Fadhilah
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Halif
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
Unggah3  Universitas Indonesia Library
cover
Muhammad Haddad
"Indonesia merupakan negara hukum yang mengadopsi asas Fictie Hukum. Asas tersebut memandang setiap orang tahu hukum tanpa pengecualian. Penyediaan akses yang mudah terhadap produk hukum merupakan konsekuensi dari hal tersebut. Meski telah tersedia beberapa layanan daring pencarian hukum, baik oleh pemerintah maupun swasta, layanan tersebut belum mampu menangkap relasi intradokumen dan antardokumen dengan baik. Dalam meningkatkan sistem pencarian hukum, terdapat knowledge graph (KG) bernama LexID yang menghadirkan representasi peraturan perundang-undangan Indonesia dalam sebuah graf. KG tersebut dikonstruksi dengan pendekatan rule-based. Namun, pendekatan rule-based tidak mudah beradaptasi dengan perubahan dalam format atau konten dokumen dan memerlukan pemeliharaan berkelanjutan. Penelitian ini mengusulkan pendekatan lain dalam konstruksi LexID. Proses konstruksi LexID dilakukan menggunakan pre-trained large language model (LLM) berupa CodeGemma parameter 7B, Code Llama parameter 7B, dan Phi-3 parameter 7B. Jenis prompt yang digunakan, yaitu prompt kode dan teks dengan variasi 1-shot dan 2-shot, sehingga total terdapat dua belas skenario percobaan. Hasil konstruksi KG kemudian dievaluasi terhadap KG LexID dan diukur menggunakan metrik precision, recall, dan skor F1. Dari hasil konstruksi, didapatkan skor F1 hasil dari prompt teks 1-shot: CodeGemma 0.405, CodeLlama 0.452, dan Phi 0.362; skor F1 hasil dari prompt kode 1-shot: CodeGemma 0.645, CodeLlama 0.567, dan Phi 0.526; skor F1 hasil dari prompt teks 2-shot: CodeGemma 0.572, CodeLlama 0.502, dan Phi 0.386; skor F1 hasil dari prompt kode 2-shot: CodeGemma 0.687, CodeLlama 0.583, dan Phi 0.539.

Indonesia operates under a legal system that adopts the principle of Legal Fiction, which posits that every individual is presumed to be aware of the law without exception. Consequently, providing easy access to legal documents is imperative. Despite the availability of several online legal search services offered by both government and private entities, these services have yet to effectively capture intra-document and inter-document relationships. To enhance the legal search system, a knowledge graph (KG) named LexID has been developed to represent Indonesian legislation in a graph format. This KG has traditionally been constructed using a rule-based approach. However, this approach struggles to adapt to changes in document format or content and necessitates continuous maintenance. This study proposes an alternative approach for the construction of LexID utilizing pre-trained large language models (LLMs), specifically CodeGemma with 7 billion parameters, Code Llama with 7 billion parameters, and Phi-3 with 7 billion parameters. The study employs both code and text prompts, with variations of 1-shot and 2-shot, resulting in a total of twelve experimental scenarios. The constructed KG is then evaluated against the existing LexID KG, using precision, recall, and F1 score metrics. The results of the construction indicate the following F1 scores: for 1-shot text prompts, CodeGemma achieved 0.405, Code Llama 0.452, and Phi 0.362; for 1-shot code prompts, CodeGemma achieved 0.645, Code Llama 0.567, and Phi 0.526; for 2-shot text prompts, CodeGemma achieved 0.572, Code Llama 0.502, and Phi 0.386; and for 2-shot code prompts, CodeGemma achieved 0.687, Code Llama 0.583, and Phi 0.539."
Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
Unggah3  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>