Analisis triclustering merupakan teknik yang mampu mengelompokkan data 3 dimensi secara bersamaan, sehingga dapat diperoleh sub-ruang dari data 3D yang terdiri dari subset observasi (gen), subset kondisi (kondisi) dan subset konteks (waktu). Analisis triclustering yang dilakukan pada penelitian ini yaitu metode delta-Trimax melalui pendekatan two-way K-means. Tujuan dari metode delta-Trimax yaitu menemukan tricluster yang memiliki nilai minimum dari three-dimensial mean square residual (ð3) dan volume maksimum. Pendekatan two-way K-means digunakan untuk membentuk suatu populasi awal agar dapat mengurangi beban komputasi dan membantu membentuk tricluster yang lebih baik. Metode ini akan diimplementasikan pada data ekspresi gen kultur HAE (Human Airway Epithelial) yang terinfeksi virus SARS-CoV, SARS-dORF6, SARS-BatSRBD, dan H1N1. Implementasi dilakukan dengan 9 simulasi dan diperoleh simulasi terbaik dengan nilai threshold dari perhitungan MSR sebesar 0.0435, threshold = 1.7 dan sebanyak 24 tricluster terbentuk berdasarkan penilain triclustering quality index (TQI). Dari himpunan tricluster tersebut diperoleh informasi mengenai perbandingan pola ekspresi gen pada virus SARS-CoV, SARS-dORF6, SARS-BatSRBD dengan virus influenza H1N1. Terdapat 7 tricluster yang memiliki kesamaan pola ekspresi gen di setiap kondisi dan 8 tricluster yang diduga memiliki perbedaan kondisi antara setiap variasi virus SARS- CoV dengan virus influenza H1N1. Pada tricluster lainnya juga diperoleh informasi hanya beberapa variasi Sars-CoV yang memiliki kesamaan satu sama lain dan juga kesamaan atau perbedaan dengan H1N1. Berdasarkan titik waktu diperoleh 3 tricluster tidak memberikan efek karena pola ekspresi gen tiap waktu sama dengan kondisi awal yaitu titik waktu ke-1 dan 17 tricluster diduga memberikan efek paska infeksi. Untuk menilai kualitas hasil tricluster terbentuk dalam penggambaran fungsi biologis dari kumpulan gen pada tricluster dilakukan evaluasi gene ontology (GO). GO adalah sebuah sistem untuk menggambarkan fungsi, biological process, celluler componet gen dan moleculer function dalam berbagai organisme. Dari hasil evaluasi diperoleh sebanyak 20 tricluster yang memiliki keterlibatan dan kaitan kuat dengan setiap konsep GO. Sebanyak 3 tricluster hanya memiliki keterlibatan atau kaitan pada salah satu aspek GO dan 1 tricluster yang memiliki keterlibatan pada semua aspek GO namun hanya pada aspek celuller componet yang memiliki kaitan kuat. Hal ini dapat menjadi acuan bagi peneliti bidang biologi untuk memfokuskan penelitian lebih lanjut dalam pemahaman fungsi biologis pada himpunan tricluster yang memiliki keterlibatan dan kaitan kuat.
Triclustering analysis is a technique capable of clustering three-dimensional data simultaneously, thus obtaining subspaces of the 3D data consisting of subsets of observations (genes), attribute subsets (conditions), and context subsets (time). The triclustering analysis conducted in this research utilizes the δ-Trimax method through a two-way K-means approach. The goal of the δ-Trimax method is to find triclusters that have minimum values of three-dimensional mean square residu MSR_3D and maximum volume. The two-way K-means approach is used to form an initial population to reduce computational burden and aid in forming better triclusters. This method will be implemented on gene expression data from HAE (Human Airway Epithelial) cultures infected with SARS-CoV, SARS-dORF6, SARS-BatSRBD, and H1N1 viruses. The implementation is carried out through 9 simulations, and the best simulation is obtained with a threshold value of δ calculated from MSR of 0.0435, a threshold value of λ=1.7, resulting in 24 formed triclusters based on the triclustering quality index (TQI) assessment. From the set of triclusters, information regarding the comparison of gene expression patterns between SARS-CoV, SARS-dORF6, SARS-BatSRBD viruses and H1N1 influenza virus is obtained. There are 7 triclusters that exhibit similar gene expression patterns across all conditions, and 8 triclusters that are suspected to have condition differences between various SARS-CoV viruses and the H1N1 virus. Other triclusters also provide information where only certain SARS-CoV variations share similarities with each other or similarities or differences with H1N1. Based on the time points, 3 triclusters show no effect as their gene expression patterns remain the same as the initial condition (time point 1), while 17 triclusters are suspected to have post- infection effects. To assess the quality of the formed triclusters in terms of biological function representation of the gene sets within the triclusters, an evaluation of gene ontology (GO) is performed. GO is a system for describing the functions, biological processes, cellular components, and molecular functions of genes across various organisms. The evaluation method involves the Database for Annotation, Visualization, and Integrated Discovery (DAVID) in calculating p-values. The evaluation results reveal that 20 triclusters have strong involvement and correlation with each GO concept. Three triclusters only exhibit involvement or correlation in one specific aspect of GO, and one tricluster exhibits involvement in all GO aspects, but with a strong correlation only in the cellular component aspect. This information can serve as a reference for researchers in the field of biology to focus further research on understanding the biological functions within tricluster sets that have strong involvement and correlation.
"Analisis triclustering merupakan pengembangan dari analisis clustering dan biclustering. Analisis triclustering bertujuan mengelompokkan data tiga dimensi secara simultan yang menghasilkan submatriks dinamakan tricluster. Pendekatan yang digunakan dalam analisis triclustering di antaranya adalah pendekatan berdasarkan greedy dan pattern. Salah satu contoh pendekatan analisis triclustering berdasarkan greedy adalah metode δ – Trimax. Sedangkan salah satu contoh analisis triclustering berdasarkan pattern adalah metode Timesvector. Metode δ – Trimax bertujuan menghasilkan tricluster yang memiliki mean square residual kecil dari threshold dengan volume data tricluster yang maksimal. Metode Timesvector bertujuan mengelompokkan matriks data yang menunjukkan pola yang sama atau berbeda pada data tiga dimensi. Implementasi metode δ – Trimax dan metode Timesvector pada penelitian ini dilakukan pada data ekspresi gen pasien penderita penyakit periodontitis. Ekspresi gen diukur pada 14 titik kondisi dan 4 titik waktu. Berdasarkan beberapa skenario yang telah diterapkan, metode δ – Trimax memberikan hasil terbaik pada saat menerapkan skenario dengan nilai threshold =0,0028564 dan =1,25 dengan jumlah tricluster yang dihasilkan adalah 260 tricluster. Dari 260 tricluster tersebut, dipilih tricluster ke-216 yang dianalisis dengan menggunakan metode Timesvector. Hasil tricluster yang diperoleh dapat menambah wawasan bagi ahli medis dalam memberikan periodontal treatment kepada pasien penderita periodontitis berikutnya.
"
Salah satu teknik analisis yang dapat digunakan pada data mining dalam mengelompokkan data adalah Triclustering. Triclustering merupakan metode pengelompokan secara bersamaan pada data tiga dimensi yang terdiri dari observasi, atribut, dan konteks. Triclustering kerap digunakan pada bidang bioinformatika untuk mengelompokkan data ekspresi gen di titik waktu tertentu pada suatu kondisi eksperimen. Triclustering yang diajukan pada penelitian ini menggunakan metode Hybrid – TRIMAX Binary Particle Swarm Optimization. Particle Swarm Optimization (PSO) adalah teknik pengelompokan yang terinspirasi oleh perilaku biologis populasi ikan atau kawanan burung yang bergerak untuk menuju sumber makanan. Setiap individu di dalam populasi disebut sebagai partikel yang didefinisikan sebagai kandidat solusi (tricluster). Istilah “Binary” mengartikan bahwa partikel yang bergerak di ruang pencarian berbentuk vektor biner (bit) yang bernilai 0 atau 1. Tahap inisiasi populasi dilakukan dengan menggunakan algoritma nodes deletion pada – TRIMAX untuk menghasilkan populasi awal yang homogen. Metode – TRIMAX dapat menghasilkan tricluster dengan nilai Mean Residual Square (MSR) lebih kecil dari threshold ð¿ sehingga dapat meningkatkan efektifitas komputasi dari metode Hybrid – TRIMAX Binary Particle Swarm Optimization. Algoritma gabungan kemudian diimplementasikan pada data ekspresi gen tiga dimensi sel kanker pankreas PANC-1 yang diberikan obat kemoterapi ATO, JQ1, dan kombinasi keduanya pada 3 titik waktu. Diperoleh tricluster optimum dengan skenario 0,0003; 0,8; 0,2; dan tipe neighbourhood = “Gbest”. Tricluster tersebut memiliki nilai TQI sebesar 1,427E-09 dan volume tricluster sebesar 169.410. Berdasarkan tricluster optimum, diperoleh informasi mengenai kumpulan gen yang tidak merespon baik terhadap pengobatan JQ1 dan JQ1+ATO pada jangka waktu menengah dan panjang. Hasil analisis ontologi gen menunjukkan tiga aspek ontologi yang signifikan dengan p-value < 0,05, yaitu proses biologi, fungsi molekuler, dan komponen seluler. Diperoleh gen yang resisten terhadap pengobatan terlibat dalam proses biologi metabolisme sel dan pengembangan sel yang mempertahankan kehidupan sel. Pada aspek fungsi molekuler, gen berperan dalam proses pengikatan, seperti pengikatan ion, senyawa organik siklik, dan senyawa heterosiklik, serta aktivitas katalitik. Selain itu, juga ditemukan bahwa sebagian besar gen berlokasi pada sitoplasma, organel, dan nukleus dalam komponen seluler. Aspek-aspek dari ontologi gen dapat berkontribusi pada resistensi kumpulan gen dalam sel kanker PANC-1 terhadap pengobatan.
One of the analysis techniques that can be used in data mining to group data is Triclustering. Triclustering is a method of simultaneously grouping three-dimensional data consisting of observations, attributes, and context. Triclustering analysis is often used in the field of bioinformatics to group gene expression data at certain time points under experimental conditions. The triclustering analysis proposed in this study used the Hybrid – TRIMAX Binary Particle Swarm Optimization method. Particle Swarm Optimization (PSO) is a clustering technique inspired by the biological behavior of fish populations or flocks of birds that move towards food sources. Each individual in the population is referred as particles which are defined as candidate solutions (tricluster). The term "Binary" means that the particles move in the search space in the form of binary vectors (bits) with a value of 0 or 1, the number "1" represents that an individual is present in the particle. The population initialization stage is carried out using the nodes deletion algorithm in δ-TRIMAX to produce a homogeneous initial population. The δ-TRIMAX method can generate a tricluster with a Mean Residual Square (MSR) value smaller than the threshold ð¿ so that it can increase the computational effectiveness of the Hybrid δ-TRIMAX Binary Particle Swarm Optimization method. The combined algorithm then implemented on three-dimensional gene expression data of PANC-1 pancreatic cancer cells given ATO, JQ1, and a combination of both chemotherapy drugs at three time points. The optimum tricluster was obtained with scenario 0,0003; 0,8; 0,2; and neighborhood type = "Gbest". The tricluster has a TQI value of 1.427E-09 and a tricluster volume of 169,410. Based on the optimum tricluster, information was obtained about the gene pools that did not respond well to JQ1 and JQ1+ATO treatment in the medium and long term. The results of gene ontology analysis showed three significant ontological aspects with p-value <0.05, namely biological processes, molecular functions, and cellular components. It was found that treatment-resistant genes are involved in the biological process of cell metabolism and cell development that maintains cell life. In the aspect of molecular function, genes play a role in binding processes, such as ion binding, cyclic organic compounds, and heterocyclic compounds, as well as catalytic activity. In addition, it was also found that most genes are located in the cytoplasm, organelles, and nucleus in cellular components. These aspects of the gene ontology may contribute to the resistance of the gene pool in PANC-1 cancer cells to treatment.
"Metode THD-Tricluster merupakan analisis triclustering dengan pendekatan berbasis biclustering. Pada metode THD-Tricluster digunakan nilai Shifting-and-Scaling Similarity untuk membentuk bicluster terlebih dahulu dan dilanjutkan dengan membentuk tricluster. Nilai SSSim menggunakan Shifting-and-Scaling Correlation untuk mendeteksi adanya korelasi antaranggota dengan pola pergeseran dan penskalaan serta koherensi antarwaktu dan membandingkannya dengan nilai threshold. Metode THD-Tricluster dilakukan pada data respon pengobatan terapi interferon-beta pada pasien sklerosis ganda. Skenario optimal adalah skenario dengan nilai coverage terkecil yaitu saat menggunakan nilai threshold tertinggi. Pada skenario tersebut diperoleh dua jenis tricluster yaitu tricluster yang memiliki kumpulan gen pada pasien yang responsif dan pasien yang tidak responsif terhadap terapi. Perbedaan kumpulan gen pada kedua tricluster dapat digunakan oleh para ahli medis untuk mengembangkan pengobatan terapi untuk meningkatkan tingkat keresponsifan pasien sklerosis ganda terhadap terapi tersebut.
The THD-Tricluster method is a triclustering analysis with a biclustering-based approach. The THD-Tricluster method uses the Shifting-and-Scaling Similarity value to form a bicluster first and shows it by forming a tricluster. The SSSim value uses Shifting-and-Scaling Correlation to use an interface with shifting and scaling patterns as well as intertemporal coherence and compares it with the threshold value. The THD-Tricluster method was performed on treatment response data to interferon-beta therapy in multiple sclerosis patients. The optimal scenario is a scenario with a coverage value scenario that uses the highest threshold value. In this scenario, there are two types of tricluster, namely the tricluster which has a collection of genes in responsive patients and patients who are not responsive to therapy. Differences in gene pools in the two tricluster can be used by medical professionals to develop IFN-β therapeutic treatments to increase the responsiveness of multiple sclerosis patients to these therapies.
"