Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 202483 dokumen yang sesuai dengan query
cover
Felicia
"Sekolah adalah lembaga pendidikan formal yang bertujuan untuk memberikan pengajaran dan pembelajaran kepada siswa dalam berbagai bidang studi. Sekolah terdiri dari berbagai jenjang pendidikan, taman kanak-kanak hingga sekolah menengah atas. Kualitas performa suatu sekolah dapat diukur dengan melihat capaian Ujian Nasionalnya. Ujian Nasional tingkat SMA wajib diikuti oleh seluruh siswa kelas 12 dan dilaksanakan untuk menetapkan standar nasional yang akan digunakan untuk mengendalikan mutu pendidikan secara nasional. Analisis performa sekolah pada umumnya menggunakan metode konvensional sistem peringkat atau ranking berdasarkan nilai rata-rata Ujian Nasional. Analisis data nilai Ujian Nasional juga dapat dilakukan dengan berbagai cara termasuk pengelompokan data menggunakan algoritma clustering maupun biclustering. Metode clustering dapat digunakan untuk mengidentifikasi nilai sekolah yang mirip satu sama lain. Salah satu metode clustering yang populer digunakan adalah metode hierarki dan metode partisi (metode K-Means). Tetapi pada kenyataannya, masing-masing mata pelajaran memiliki penilaian yang sangat berbeda dari mata pelajaran lainnya. Penerapan biclustering pada metode pengelompokan ini diperlukan untuk mengungkap pola hubungan yang tidak terlihat antara nilai dan mata pelajaran pada data. Hal ini diimplementasikan dalam pengelompokan secara bersamaan dan simultan antara SMA (baris) dan mata pelajaran (kolom). Penelitian ini bertujuan untuk mengelompokkan SMA/MA di DKI Jakarta dan indikator nilai Ujian Nasional tahun 2019 menggunakan metode biclustering Cheng and Church dan Plaid Model serta membandingkan hasil penerapan metode tersebut menggunakan nilai indeks Jaccard dan variansi koherensi. Penelitian ini menggunakan data Capaian Nilai Ujian Nasional tahun 2019 pada SMA/MA di DKI Jakarta yang bersumber dari Kementerian Pendidikan dan Kebudayaan. Hasil penerapan metode biclustering Cheng and Church dan biclustering Plaid Model, menunjukkan bahwa bicluster-bicluster yang dihasilkan metode biclustering Plaid Model memiliki kisaran nilai indeks Jaccard dan variansi koherensi yang lebih rendah dibandingkan biclustering Cheng and Church. Hasil penelitian tersebut menunjukkan bahwa metode biclustering Plaid Model memberikan performa pengelompokan terbaik pada data Ujian Nasional. Diharapkan hasil penelitian ini dapat membantu memberikan wawasan terkait metode yang sesuai untuk diterapkan pada data dengan kondisi yang serupa.

A school is a formal educational institution aimed at providing teaching and learning to students in various fields of study. Schools consist of various levels of education, from kindergarten to high school. The quality of a school's performance can be measured by looking at its National Exam achievements. The National Exam at the high school level must be taken by all 12th-grade students and is conducted to establish national standards that will be used to control the quality of education on a national scale. School performance analysis generally uses conventional ranking systems based on the average National Exam scores. National Exam score data analysis can also be performed in various ways, including data clustering using clustering or biclustering algorithms. Clustering methods can be used to identify schools with similar scores. One of the popular clustering methods used is hierarchical clustering and partitioning methods (K-Means method). However, in reality, each subject has distinctly different assessments from other subjects. The application of biclustering in this clustering method is necessary to reveal hidden patterns of relationships between scores and subjects in the data. This is implemented in simultaneous grouping of both high schools (rows) and subjects (columns). This study aimsto cluster high schools (SMA/MA) in Jakarta and the 2019 National Exam score indicators using the Cheng and Church biclustering method and the Plaid Model biclustering method, and to compare the results of these methods using Jaccard index values and coherence variance. This study uses the 2019 National Exam Score Achievement data for high schools (SMA/MA) in Jakarta sourced from the Ministry of Education and Culture. The results of the application of the Cheng and Church biclustering method and the Plaid Model biclustering method show that the biclusters produced by the Plaid Model biclustering method have a lower range of Jaccard index values and coherence variance compared to Cheng and Church biclustering. The results of this study indicate that the Plaid Model biclustering method provides the best clustering performance for National Exam data. The findings of this study are expected to offer insights into the appropriate methods for application to similar data conditions."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erica
"Diversifikasi portofolio telah dijadikan solusi dalam memitigasi risiko dalam berinvestasi. Tujuan utama diversifikasi portofolio adalah untuk mengurangi variansi return dibandingkan dengan investasi pada satu saham tertentu. Metode Clustering, misalnya Agglomerative Clustering, digunakan untuk mengelompokkan saham-saham ke dalam masing-masing klaster yang homogen berdasarkan risiko. Klaster-klaster yang terbentuk kemudian akan digunakan sebagai acuan diversifikasi portofolio. Objek yang digunakan dalam metode clustering adalah 7 skor rasio finansial PER, EPS, PEG, DER, ROE, Current Ratio dan Profit Margin dari setiap saham. Selanjutnya, proporsi dari setiap saham pembentuk portofolio ditentukan melalui aplikasi Genetic Algorithm ke masing-masing klaster.
Pada penelitian ini, metode Genetic Algorithm dibangun berdasarkan model MVCCPO sehingga membentuk metode Genetic Algorithm Constrained. Performa dari Agglomerative Clustering Genetic Algorithm Constrained yang dievaluasi menggunakan data aktual, menghasilkan portofolio yang mampu mengalahkan return portofolio pasar dan memiliki rata-rata return yang lebih besar dibandingkan dengan portofolio yang dikonstruksi dengan metode Genetic Algorithm saja. Namun, dengan hubungan linear antara risiko dan return, adalah masuk akal bahwa portofolio dengan return yang lebih besar akan memiliki risiko yang lebih besar pula.

The purpose of portfolio diversification is to reduce the return rsquo s variance risk compared with a single stock investment or undiversified portfolio. The primary motivation of this research is to investigate the portfolio selection strategies through clustering and genetic algorithm. Clustering serves as a method to cluster assets with similar financial ratio scores the scores of EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin. By clustering method such as Agglomerative Clustering, stocks with similar risk profile are clustered together and the clusters produced can be used in diversifying portfolio. Genetic Algorithm will then be applied to each resulting cluster to obtain the optimal proportion of each stock in the portfolio.
The Genetic Algorithm used in this study is built from the MVCCPO model hence making it a Constrained Genetic Algorithm. The performance of Constrained Genetic Algorithm refined with Agglomerative Clustering in portfolio optimization, evaluated based on some actual datasets, gives a portfolio that beats the market and has bigger expected return than a portfolio constructed with only Genetic Algorithm. Due to the direct relationship of risk and return, it is logical to expect portfolio with a bigger return would have a bigger risk.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ja’far Hilmy Farhan
"Identifikasi suatu letak atau lokasi tumor beserta jaringan-jaringan sehat di sekitarnya secara akurat, merupakan salah satu langkah dalam melakukan perencanaan radioterapi atau disebut juga dengan istilah treatment planning. Setelah lokasinya ditentukan dan dipastikan, dokter akan mencoba membuat perencanaan berupa dosis radiasi yang dibutuhkan untuk diberikan kepada pasien sehingga dapat memberikan kerusakan yang maksimal pada tumor tanpa memberikan dampak negatif pada organ-organ sehat di sekitarnya. Salah satu solusi dalam melakukan tugas tersebut adalah berupa segmentasi otomatis suatu citra PET. Segmentasi otomatis ini tidak hanya memakan waktu yang cukup singkat, tetapi juga mempertimbangkan seluruh nilai time-activity curve (TAC) yang ada pada citra. Salah satu metode untuk menentukan lokasi tumor adalah dengan cara segmentasi otomatis menggunakan algoritma clustering k-means. Berdasarkan penelitian dari (Abualhaj, 2017), clustering k-means memberikan hasil segmentasi yang sangat baik dalam melalukan pendeteksian lokasi tumor. Namun, algoritma yang digunakan tidak sepenuhnya otomatis karena perlunya input parameter nilai yang diterapkan oleh pengguna. Penelitian ini bertujuan mengidentifikasi pengaruh error terhadap input dari algoritma k-means clustering yaitu apabila terjadi kesalahan dalam memasukkan nilai-nilai input tersebut. Terdapat lima paremeter yang akan diuji dengan masing-masing lima variasi masukan. Parameter tersebut masing-masing adalah maximum number of cluster, maximum iteration, maximum repetition time, total counts, dan random counts. Untuk semua parameter, hasil jumlah cluster optimalnya tidak berubah dan tidak dipengaruhi oleh variasi dari parameter tersebut yaitu berjumlah 4 cluster kecuali pada parameter pertama apabila nilainya di bawah 4. Pada parameter pertama, hasil bentuk segmentasi beserta kurva TAC nya berubah saat nilai parameternya di bawah 4. Adapun jika nilainya di atas 4, berdasarkan yang diteliti penulis, tidak ada perbedaan pada bentuk segmentasi maupun jumlah optimal clusternya. Pada parameter kedua, bentuk segmentasinya terlihat ada sedikit perbedaan beserta kurva TAC saat nilai parameternya diperkecil.  Parameter ketiga memiliki hasil yang mirip dengan parameter kedua yang mana hasil segmentasinya memiliki sedikit perbedaan saat nilainya diperkecil begitu pula dengan kurva TAC nya. Parameter ketiga dan keempat memiliki hasil yang mirip ketika nilainya diperkecil maupun diperbesar yakni terlihat adanya sedikit perbedaan pada hasil segmentasinya.

Identifying a location or location of a tumor and surrounding healthy tissues accurately is one of the steps in planning radiotherapy or also known as treatment planning. After the location is determined and confirmed, the doctor will try to make a plan in the form of the radiation dose needed to be given to the patient so that it can provide maximum damage to the tumor without having a negative impact on the surrounding healthy organs. One solution in performing this task is in the form of automatic segmentation of a PET image. This automatic segmentation not only takes a fairly short time, but also considers all the time-activity curve (TAC) values ​​in the image. One method to determine the location of the tumor is by means of automatic segmentation using the k-means clustering algorithm. Based on research from (Abualhaj, 2017), k-means clustering provides excellent segmentation results in detecting tumor locations. However, the algorithm used is not fully automated because of the need for user-implemented value parameter input. This study aims to identify the effect of error on the input of the k-means clustering algorithm, namely if there is an error in entering the input values. There are five parameters to be tested with five variations of each input. These parameters are maximum number of cluster, maximum iteration, maximum repetition time, total counts, and random counts. For all parameters, the results of the optimal number of clusters do not change and are not influenced by variations of these parameters, which are 4 clusters except for the first parameter if the value is below 4. In the first parameter, the results of the segmentation form along with the TAC curve change when the parameter value is below 4 Meanwhile, if the value is above 4, based on what the author has studied, there is no difference in the form of segmentation and the optimal number of clusters. In the second parameter, the shape of the segmentation shows a slight difference along with the TAC curve when the parameter value is reduced. The third parameter has similar results to the second parameter where the segmentation results have a slight difference when the value is reduced as well as the TAC curve. The third and fourth parameters have similar results when the value is reduced or enlarged, namely that there is a slight difference in the segmentation results. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reza Maullanna
"Kegiatan berbelanja secara daring di e-commerce meningkat seiring dengan peningkatan pengguna internet di Indonesia. Kondisi ini mengakibatkan melonjaknya kegiatan pengiriman barang. Dalam proses pengiriman barang terdapat tahap last-mile delivery. Adapun tantangan yang dihadapi pada tahap ini adalah jumlah pengiriman yang banyak dan waktu pengiriman yang panjang. Hal ini bisa mengakibatkan penambahan jumlah alat transportasi yang digunakan. Salah satu alat transportasi untuk last-mile delivery adalah truk. Penggunaan truk dalam last-mile delivery dapat menyebabkan polusi udara serta tidak dapat mengirimkan paket tepat waktu karena kemacetan lalu lintas (dalam kasus daerah perkotaan). Karena hal itu, harus dicari jalan keluar yang dapat menurunkan polusi udara serta menurunkan kasus pengiriman paket tidak tepat waktu dalam last-mile delivery. Penelitian ini menggabungkan pemakaian truk dan drone yang bermaksud untuk menurunkan kasus pengiriman paket tidak tepat waktu serta menurunkan polusi udara dengan keunggulan drone. Metode yang dipakai melibatkan implementasi Fuzzy C-Means (FCM) clustering untuk mengelompokkan data pelanggan dengan mempertimbangkan kendala jumlah drone yang tersedia serta radius terbang drone dan implementasi Algoritma Genetika untuk merancang rute pengiriman yang optimal dengan mempertimbangkan kendala Time Windows pada depot dan semua cluster. Penerapan kedua metode itu dipakai pada data 90 pelanggan. FCM bisa menurunkan 63,15% jumlah cluster, menurunkan 36,03% keseluruhan jarak tempuh rute, menurunkan 28,77% keseluruhan waktu tempuh rute, serta pengurangan 4,06% nilai fungsi objektif bila ketimbang dengan yang didapat dari clustering secara intuitif.

Online shopping activities in e-commerce are increasing along with the rise in internet users in Indonesia. This trend has led to a surge in goods delivery activities. In the delivery process, there is a crucial last-mile delivery stage. The challenges faced during this stage include a high volume of deliveries and extended delivery times, leading to the necessity of deploying additional transportation means. One commonly used transportation method for last-mile delivery is trucks. However, the utilization of trucks in last-mile delivery poses challenges such as air pollution and the inability to ensure timely package deliveries due to traffic congestion, particularly in urban areas. To address these issues, a solution must be found that not only reduces air pollution but also mitigates instances of delayed package deliveries in last-mile delivery. This research proposes a novel approach by integrating the use of trucks and drones to capitalize on the advantages offered by drones. The methodology employed incorporates the implementation of Fuzzy C-Means (FCM) clustering to categorize customer data, considering constraints related to the number of available drones and the flying radius of the drones. Additionally, a Genetic Algorithm is applied to optimize delivery routes, considering time window constraints at the depot and within all clusters. The application of these two methods was tested on a dataset comprising 90 customers. FCM demonstrated the ability to reduce the number of clusters by 63.15%, decrease the overall route travel distance by 36.03%, and minimize the overall route travel time by 28.77%. Furthermore, it led to a 4.06% reduction in the objective function values compared to intuitive clustering."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfia Choirun Nisa
"Keberhasilan pembangunan suatu negara dapat dilihat dari kondisi kesejahteraan rakyatnya. Peningkatan kesejahteraan rakyat menjadi sasaran utama dalam kegiatan pembangunan yang dilaksanakan oleh pemerintah. Agar pembangunan yang dilakukan efektif dan tepat sasaran, perlu dilakukan pengelompokan untuk mengetahui karakteristik wilayah. Penelitian ini membahas mengenai pengelompokan kabupaten/kota di Pulau Jawa berdasarkan indikator kesejahteraan rakyat tahun 2022. Kesejahteraan yang diukur merupakan kesejahteraan materi. Variabel yang digunakan dalam penelitian ini adalah persentase penduduk miskin, PDRB per kapita atas dasar harga berlaku, rata-rata lama sekolah, harapan lama sekolah, persentase pengeluaran per kapita untuk makanan, tingkat pengangguran terbuka, jumlah penduduk, kepadatan penduduk, dan angka harapan hidup. Terdapat dua pendekatan yang digunakan dalam mengelompokkan kabupaten/kota beserta variabel-variabelnya. Pendekatan pertama adalah mengelompokkan kabupaten/kota dan variabel-variabelnya secara simultan dengan menggunakan metode biclustering plaid model. Pendekatan kedua adalah mengelompokkan kabupaten/kota menggunakan clustering metode Ward dan dilanjutkan dengan metode biplot. Tujuan penelitian ini adalah membandingkan hasil kedua pendekatan tersebut, yaitu hasil biclustering dan hasil cluster-biplot pada data 119 kabupaten/kota di Pulau Jawa pada tahun 2022 berdasarkan indikator kesejahteraan rakyat. Berdasarkan hasil penelitian, didapatkan jumlah kelompok dari kedua pendekatan tersebut adalah sebanyak 2 dengan kelompok 1 merupakan wilayah yang lebih sejahtera daripada kelompok 2. Ditinjau dari nilai standar deviasinya, kelompok hasil biclustering plaid model memiliki nilai standar deviasi yang lebih kecil dibanding kelompok hasil cluster-biplot. Dengan demikian, secara umum pendekatan pertama menghasilkan kelompok yang lebih baik karena lebih homogen dibandingkan dengan pendekatan kedua.

The success of a country's development can be known from the well-being of its people. Improving the welfare of the population is the main goal in the development activities carried out by government. To ensure that development is effective and targeted, grouping is needed to understand the characteristics of the region. This study discusses the grouping of regencies/cities in Java based on the people's welfare indicators in 2022. The measured welfare is material well-being. Variables used in this study are the percentage of the poor population, GDP per capita at current prices, average length of schooling, expected length of schooling, percentage of per capita expenditure on food, open unemployment rate, population, population density, and life expectancy. There are two approaches used in grouping regencies/cities along with their variables. The first approach is to group regencies/cities and their variables simultaneously using plaid model biclustering method. The second approach is to group regencies/cities using the Ward clustering method and then followed by the biplot method. The aim of this study is to compare the results of these two approaches, namely the biclustering results and the cluster-biplot results on data from 119 regencies/cities in Java in 2022 based on people's welfare indicators. Based on the results of this study, the number of groups from each approach is 2, with group 1 being more prosperous than group 2. Judging from the standard deviation values, the plaid model biclustering result groups have lower standard deviation values compared to the cluster-biplot result groups. Therefore, in general the first approach produces better groups as they are more homogeneous compared to the second approach."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asita Darma Irawati
"Pertimbangan finansial menjadi salah satu penentu utama apakah seseorang akan melanjutkan
pendidikan ke tingkat yang lebih tinggi atau tidak, sehingga diperlukan beasiswa untuk
membantu mahasiswa dalam menempuh pendidikan tinggi, terutama hingga tingkat doktor.
Besar biaya yang dikeluarkan oleh lembaga penyedia beasiswa kepada penerima beasiswa
tentunya diharapkan sepadan dengan kualitas ilmu yang diperoleh. Oleh karena itu, penelitian
ini bertujuan untuk membahas analisis pengelompokan universitas terbaik dunia berdasarkan
komponen biaya pendidikan program doktor dengan metode K-Means. Universitas pada
penelitian ini diambil dari QS World University Rangkings (WUR) 2022. Analisis eksploratori
data dilakukan dan diperoleh bahwa terdapat 83 dari 472 universitas di dunia memberi bantuan
dana penuh untuk studi program doktor. Nilai Silhouette sebesar 0,72 menunjukkan bahwa tiga
merupakan jumlah kelompok yang optimal bagi data. Sehingga terbentuk kelompok A
sebanyak 328 universitas, kelompok B sebanyak 108 universitas, dan kelompok C sebanyak
36 universitas. Kelompok A terdiri dari universitas dengan SPP dan biaya hidup per bulan
relatif rendah, kelompok B sedang, dan kelompok C tinggi. Untuk biaya transportasi udara,
kelompok B cenderung rendah, sedangkan kelompok A dan C relatif serupa dan lebih mahal
dari kelompok B. Sementara untuk biaya visa, kelompok A cenderung lebih murah, sedangkan
kelompok B dan C cenderung serupa dengan biaya lebih mahal. Berdasarkan analisis ini,
penulis memberikan saran universitas yang bisa dipertimbangkan lembaga pemberi beasiswa
sebagai perguruan tinggi tujuan.

Financial concern has been one of the main reasons why an individual wants to pursue higher
education. That is why scholarship is needed to help students earn an education, especially until
doctoral degree. The amount of money spent by institution who give scholarship must be
equivalent with the quality of knowledge an awardee got. This study aims to do clustering
analysis of the world’s top universities based on tuition fee components for doctoral program
using K-Means method. The object of this study are universities based on QS World University
Rankings 2022. Exploratory data analysis is done and found that there are 83 out of 472
universities in the world who give fully funded program for doctoral study. Based on the
silhouette value of 0.72, three is the best number of clusters for the data. Group A, B, C consists
of 328, 108, and 36 universities in respective order. Group A consists of universities who have
chepear tuition fee and monthly living cost compared to Group B dan C. However, Group B
consists of universities who have cheaper transportation, meanwhile Group A and C are quiet
similar. For visa, Group A is cheaper compared to Group B and C which are similar. Based on
the results, recommendations are given to the institution who provide scholarship about the
objective university for doctoral study.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Eriza Aminanto
"Analisis biclustering merupakan pengembangan analisis clustering, dimana analisis biclustering merupakan proses partisi data matriks menjadi sub-matriks berdasarkan baris dan kolom secara simultan. Salah satu metode analisis bicluster yaitu dengan menggunakan model probabilistik, contohnya adalah Plaid model yang dapat memberikan hasil bicluster yang bersifat overlapping. Plaid model, memperhitungkan nilai elemen yang diberikan dari suatu sub-matriks tertentu, sehingga pada analisis biclustering dapat dilihat sebagai jumlah kontribusi atau efek dari bicluster tertentu. Tahapan analisis biclustering dengan plaid model diawali dengan input data berbentuk matriks, kemudian dilakukan penaksiran model awal dan membuat matriks residual dari model tersebut. Kemudian penentuan kandidat bicluster. Kandidat tersebut ditaksir parameter efeknya dan parameter keanggotaan bicluster. Terakhir dilakukan pemangkasan kandidat bicluster tersebut. Implementasi dilakukan pada data matriks ekspresi gen berupa data numerik yaitu data penyakit kanker usus, dimana baris berisikan observasi atau pasien sedangkan kolom berisikan jenis dari gen yang dilakukan dalam 6 skenario. Masing-masing skenario menggunakan parameter model dan nilai threshold berbeda. Validasi hasil implementasi menggunakan indeks Jaccard yaitu kedektahan hasil anggota bicluster dan variansi koherensi. Hasil implementasi menunjukkan penggunaan model yang lebih sederhana yang hanya menggunakan efek mean memberikan variansi koherensi yang lebih tinggi dibandingkan penggunaan model yang berisi mean, efek baris, dan efek kolom dari bicluster.

Biclustering analysis is the development of clustering analysis, which is the process of partitioning matrix data into sub-matrices based on rows and columns simultaneously. One method of bicluster analysis is using probabilistic model, for example the Plaid model that provide overlapping bicluster. Plaid model, calculates the value of an element given from a particular sub-matrix, thus can be seen as number of contributions of particular bicluster. The process begins with matrix data input, then an initial model is assessed and makes a residual matrix from the model. Then determining bicluster candidates. The candidate assessed for its effect parameters and bicluster membership parameters. Finally, the bicluster candidate was prunned. The implementation is carried out on the gene expression matrix data in form of numerical data, namely colon cancer data, where the rows contain observations while the columns contain the types of genes carried out in 6 scenarios. Each scenario uses different model parameters and threshold values. Validation of the implementation results using Jaccard index and coherence variance. Implementation results show that simpler model which only uses mean effect gives higher coherence variance than using model that contains mean, row, and column effect of the bicluster."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Safitri
"Kemiskinan di Indonesia masih menjadi masalah yang harus diperhatikan setiap tahun. Menurut Laporan Susenas Maret 2022, Pulau Sulawesi menempati urutan ketiga dari enam pulau besar di Indonesia berdasarkan persentase penduduk miskin. Hal ini menunjukkan masih banyak penduduk di Pulau Sulawesi yang mengalami kemiskinan. Oleh karena itu, pemerintah perlu mengambil kebijakan yang tepat untuk mengatasi kemiskinan. Salah satu upaya yang dapat dilakukan pemerintah adalah dengan melakukan pengelompokan, yaitu mengelompokkan daerah-daerah kabupaten/kota di Pulau Sulawesi berdasarkan variabel-variabel kemiskinan. Tujuan penelitian ini adalah mengelompokkan data secara dua arah yaitu pengelompokan berdasarkan kabupaten/kota dan variabel-variabelnya secara bersamaan. Dengan terbentuknya pengelompokan kabupaten/kota dan variabel secara bersamaan akan mempermudah pemerintah untuk membuat kebijakan untuk mengatasi kemiskinan. Metode yang sesuai untuk mengelompokkan kabupaten/kota dan variabel-variabel secara bersamaan adalah metode biclustering. Metode biclustering dapat melakukan pengelompokan observasi dan karakteristik secara bersamaan sehingga terbentuk bicluster yang dapat dicirikan dengan karakteristik yang berbeda. Salah satu algoritma biclustering yaitu Iterative Signature Algorithm (ISA). Pengelompokan dengan menggunakan Iterative Signature Algorithm (ISA) memerlukan nilai ambang batas atas dan nilai ambang batas bawah. Nilai ambang batas adalah nilai yang digunakan untuk menentukan apakah suatu wilayah kabupaten/kota dan variabel-variabel dapat masuk ke dalam bicluster. Hasil yang terbaik dipilih berdasarkan rata-rata Mean Square Residu (MSR) per volume. Analisis biclustering pada data kemiskinan di Pulau Sulawesi tahun 2022 menggunakan Iterative Signature Algorithm (ISA) menghasilkan sebanyak 2 bicluster. Pemerintah diharapkan dapat membuat kebijakan yang tepat sesuai dengan masalah yang terjadi pada bicluster 1 dan bicluster 2.

Poverty in Indonesia is still a problem that must be addressed every year. According to the March 2022 Susenas report, Sulawesi Island ranks at third out of six major islands in Indonesia based on the percentage of the population living in poverty. This shows that there are still many people in Sulawesi Island who experience poverty.  Therefore, the government needs to take the right policy to overcome poverty. One of the efforts that the government can make is by clustering, namely grouping districts/cities on the island of Sulawesi based on poverty variables. The objective of this research is to group the data in two directions, namely grouping by district/city and its variables simultaneously. With the formation of groupings of districts/cities and variables simultaneously, it will be easier for the government to make policies to overcome poverty. The appropriate method to group districts/cities and variables together is the biclustering method. The biclustering method able to group observations and characteristics simultaneously so that biclusters formed that can be characterized differently. One of the biclustering algorithms is the Iterative Signature Algorithm (ISA). Clustering using the Iterative Signature Algorithm (ISA) requires an upper threshold value and a lower threshold value. Threshold value is the value used to determine whether a district/city and variables can be included in a bicluster. The best result is selected based on the average Mean Square Residu (MSR) per volume. Biclustering analysis of poverty data in Sulawesi Island in 2022 using Iterative Signature Algorithm (ISA) produce 2 biclusters. Based on this results, the government is expected to make a right policy to overcome poverty problems in bicluster 1 and bicluster 2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sri Agustina P.
"ABSTRAK
Salah satu metode dalam teknik Analisis Multivariat yang berkenaan dengar pengelompokan obyek atau variabel adalah Analisis Cluster. Analisis Cluster mengelompokkan obyek atau variabel semata-mata berdasarkan similaritas mereka, sehingga kelompok cluster yang dihasilkan akan memiliki variabilitas dalam cluster yang lebih kecil daripada variabilitas antar cluster. Dengan Analisis Cluster kita dapat memecahken populasi secara empirik dalam beberapa kelompok yang relatif homogen untuk memudahkan analisis statistik selanjutnya. Sebagai contoh aplikasi 5 Analisis Cluster dengan metode Nonhirarki (K-Means) digunakan untuk mengelompokkan secara empirik 324 Rumah Sakit Umum Departemen Kesehatan dan Pemerintah Daerah Republik Indonesia yang diukur peda 59 variabel untuk dilihat kesesuaiannya dengan pengelompokan atas tipe A. B. C. D. berasarkan kriteria Departemen Kesehatan Republik Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evan Haryowidyatna
"Per 9 Februari 2023, 87% dari total populasi kendaraan pribadi di Indonesia merupakan sepeda motor. Persebaran sepeda motor terpadat di Indonesia berada di Pulau Jawa dengan persentase sebesar 60%. Tingginya populasi sepeda motor dan fakta bahwa 80% rumah tangga di Pulau Jawa sudah memiliki sepeda motor membuat pasar sepeda motor semakin mengecil. Dalam jangka panjang, kondisi ini dapat berdampak buruk bagi industri sepeda motor yang terus ingin berkembang. Penelitian ini membahas tentang pengelompokan kabupaten dan kota di Pulau Jawa berdasarkan karakteristik demografinya. Kemudian, diberikan saran keputusan yang dapat dilakukan oleh industri sepeda motor berdasarkan kelompok kabupaten dan kota yang terbentuk menggunakan teknik clustering. Hal ini bertujuan agar produsen yang bergerak di industri sepeda motor dapat memfokuskan produknya pada kelompok kabupaten dan kota yang memiliki potensi terbaik. Terdapat 12 variabel demografi yang digunakan dalam penelitian ini, dan variabel tersebut terbagi menjadi tiga kategori: kondisi ekonomi masyarakat, kondisi kehidupan masyarakat, dan kondisi demografis daerah. Metode yang digunakan dalam penelitian ini adalah metode partitional hard clustering. Sebelumnya, dilakukan pembuatan dataset melalui proses data scrapping pada situs terpercaya, dan dilanjutkan dengan proses Exploratory Data Analysis (EDA) pada dataset. Setelah dataset terbentuk, dilakukan pengelompokan dengan metode partitional hard clustering yang terdiri dari metode K-Means Clustering dan metode K-Medoids Clustering. Kemudian, dilakukan evaluasi cluster untuk menentukan metode clustering yang paling sesuai dengan menggunakan empat metrik evaluasi yaitu Indeks Silhouette, Indeks Dunn, Indeks Davies Bouldin, dan Indeks Calinski Harabasz. Didapatkan hasil bahwa metode K-Medoids Clustering dengan 5 kelompok merupakan yang terbaik untuk mengelompokkan kabupaten dan kota di Pulau Jawa. Setelah kelompok terbentuk, setiap kelompok diberikan rekomendasi keputusan yang sebaiknya diambil oleh industri sepeda motor. Terdapat 4 rekomendasi yang dapat diberikan, yaitu distribusi suku cadang, pembuatan bengkel, penjualan sepeda motor kelas menengah ke atas, dan penjualan sepeda motor kelas menengah ke bawah.

As of February 9, 2023, 87% of the total population of private vehicles in Indonesia consists of motorcycles. The densest distribution of motorcycles in Indonesia is found on the Island of Java, with a percentage of 60%. The high population of motorcycles and the fact that 80% of households in Java already have motorcycles are causing the motorcycle market to shrink. In the long run, this condition can have negative impacts on the motorcycle industry that continues to seek growth. This research focuses on the clustering of regencies and cities in Java based on their demographic characteristics. Subsequently, decision recommendations will be provided for the motorcycle industry based on the formed groups using clustering techniques. The aim is to enable manufacturers in the motorcycle industry to focus their products on regencies and cities with the best potential. There are 12 demographic variables used in this research, divided into three categories: the economic conditions of society, the living conditions of society, and the demographic conditions of the region. The method used in this research is the partitional hard clustering method. Firstly, a dataset is created through the data scraping process on trusted sites, followed by the Exploratory Data Analysis (EDA) process on the dataset. Once the dataset is formed, clustering is performed using the partitional hard clustering method, consisting of the K-Means Clustering and K-Medoids Clustering methods. Subsequently, cluster evaluation is carried out to determine the most suitable clustering method using four evaluation metrics: Silhouette Index, Dunn Index, Davies Bouldin Index, and Calinski Harabasz Index. The results show that the K-Medoids Clustering method with 5 clusters is the best for grouping regencies and cities in Java. After the groups are formed, each group is given decision recommendations that the motorcycle industry should consider. There are four recommendations: spare parts distribution, workshop establishment, sales of mid- to high-end motorcycles, and sales of mid-range motorcycles and below."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>