Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 161374 dokumen yang sesuai dengan query
cover
Ali Zuhdi
"Kebutuhan solar terus meningkat setiap tahun, sehingga perlu pemanfaatan biodiesel untuk subtitusi bahan bakar fosil dengan bahan bakar dari energi terbarukan. Indonesia memiliki kapasitas terpasang produsen Biodiesel yang memiliki kapasitas 17,1 juta KL dan pada umumnya berbahan baku dari minyak sawit, namun terdapat beberapa produsen yang menggunakan minyak jelantah sebagai bahan bakunya, salah satunya adalah PT Bali Hijau di Denpasar, Bali. Potensi minyak jelantah yang dihasilkan Indonesia di tahun 2019 diperkirakan 3 juta KL dan berpotensi dapat dimanfaatkan salah satunya sebagai Biodiesel. Namun bahan baku yang melimpah terutama dari sektor hotel di Bali hanya sedikit yang dimanfaatkan menjadi biodiesel, sehingga perlu dilakukan riset terkait pemanfaatan limbah minyak jelantah untuk produksi biodiesel berkelanjutan sebagai salah satu penerapan ekonomi sirkular di Indonesia. Metode gabungan kuantitatif dan kualitatif dipergunakan dalam riset ini. Hasil riset menunjukan potensi minyak jelantah sebagai bahan baku biodiesel rata-rata hanya sekitar 12% dari total minyak jelantah terkumpul, dengan rata-rata potensi timbulan minyak jelantah dari sektor hotel adalah 27% dari konsumsi penggunaan minyak goreng. Tingkat Willingness to Accept (WTA) minyak jelantah dari sektor hotel di daerah Badung, Bali untuk produksi Biodiesel memiliki rata-rata WTA Rp 4.827/L atau setara Rp 5.000/L. Biaya produksi biodiesel minyak jelantah setiap batch adalah Rp 12.641/L dengan harga jual Rp 14.000/L dan margin Rp 1.359/L. Sedangkan penurunan emisi CO2 dari pemanfaatan biodiesel minyak jelantah tahun 2022 sebesar 25.112 kg CO2 e dan meningkat di tahun 2023 menjadi 39.792 kg CO2 e. Strategi keberlanjutan dengan melakukan analisis SWOT menghasilkan nilai IFAS 0,647 dan EFAS 0,684 sehingga berada di kuadran 1 yang berarti strategi yang tepat adalah growth oriented strategy.

The need for diesel fuel continues to increase every year, so it is necessary to utilize biodiesel to substitute fossil fuels with fuels from renewable energy. Indonesia has an installed capacity of Biodiesel producers which has a capacity of 17.1 million KL and is generally made from palm oil, but there are several producers who use used cooking oil as raw material, one of which is PT Bali Hijau in Denpasar, Bali. The potential of used cooking oil produced in Indonesia in 2019 is estimated at 3 million KL and can potentially be utilized as Biodiesel. However, the abundant raw materials, especially from the hotel sector in Bali, are only slightly utilized into biodiesel, so it is necessary to conduct research related to the utilization of used cooking oil waste for sustainable biodiesel production as one of the applications of circular economy in Indonesia. A combined quantitative and qualitative method was used in this research. The results showed that the potential of used cooking oil as a biodiesel feedstock averaged only about 12% of the total used cooking oil collected, with an average potential of used cooking oil generation from the hotel sector of 27% of cooking oil consumption. The Willingness to Accept (WTA) level of used cooking oil from the hotel sector in Badung, Bali for Biodiesel production has an average WTA of IDR 4,827/L or equivalent to IDR 5,000/L. The production cost of used cooking oil biodiesel per batch is IDR 12,641/L with a selling price of IDR 14,000/L and a margin of IDR 1,359/L. Meanwhile, the reduction in CO2 emissions from the use of used cooking oil biodiesel in 2022 was 25,112 kg CO2 e and increased in 2023 to 39,792 kg CO2 e. The sustainability strategy by conducting SWOT analysis resulted in an IFAS value of 0.647 and EFAS of 0.684 so that it is in quadrant 1, which means that the right strategy is a growth-oriented strategy."
Jakarta: Sekolah Ilmu Lingkungan Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Shandy Raditya Syahron
"ABSTRAK
Konsumsi bahan bakar fosil di Indonesia sebagai sumber energi kita meningkat dengan pesat. Pasokan bahan bakar berbasis minyak bumi telah menurun karena permintaan yang meningkat. Biodiesel dianggap sebagai salah satu dari banyak bahan bakar alternatif untuk memecahkan masalah ini. Biodiesel merupakan bahan bakar terbarukan, karena berasal dari limbah minyak nabati. Selain itu, pabrik mobile yang merupakan inovasi baru bisa mengatasi masalah tersebut. Sebuah pabrik mobile memiliki arti pabrik yang bisa berkeliling untuk mengolah bahan baku menjadi produk yang bermanfaat, di mana dalam proyek ini pabrik akan mengumpulkan minyak jelantah di sekitar kota untuk menghasilkan produk biodiesel. Oleh karena itu, permintaan atau demand dapat dipenuhi dengan cepat. Proses utama dari pabrik biodiesel mobile adalah reaksi esterifikasi, yang dengan mereaksikan triasilgliserol TAG dengan metanol untuk menghasilkan asam lemak metil ester FAME atau biodiesel dan gliserol. Dalam rangka untuk merancang pabrik ini, simulasi dalam program HYSYS dilakukan. Neraca bahan yang ditentukan dalam simulasi digunakan untuk menghitung ukuran peralatan. Dan kemudian, analisis ekonomi dilakukan untuk mengevaluasi kelayakan proyek ini.

ABSTRACT
The consumption of fossil fuels in Indonesia as our energy source is rapidly increasing. Supply of petroleum based fuel has already decreased as the demand is increasing. Biodiesel is considered as one of many alternative fuels to solve this problem. Biodiesel is a renewable fuel, since it is derived from waste vegetable oil WVO . Moreover, mobile plant as a new innovation could overcome the problem. A mobile plant has the meaning of a plant that could travel around to process materials to become useful products, in which in this project the plant will collect WVO around the cities to produce biodiesel products. Therefore, the demand could be met quickly. The main process of the mobile biodiesel plant is esterification reaction, which is by reacting triacylglycerol TAG with methanol to produce fatty acid methyl esters FAME or biodiesel and glycerol. In order to design the plant, a simulation in HYSYS program is done. Material balance that is determined in the simulation is used to calculate the size of equipments. Thus, an economical analysis is performed to evaluate the project rsquo s feasibility."
2016
S66049
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Dani Supardan
"Penelitian ini bertujuan untuk mempelajari proses produksi biodiesel dari minyak goreng bekas menggunakan peralatan kavitasi hidrodinamik. Proses produksi biodiesel dilakukan dalam 2 (dua) tahap. Tahap pertama adalah proses esterifikasi menggunakan katalis asam yang bertujuan untuk menurunkan kandungan asam lemak bebas dalam minyak goreng bekas. Pada tahap kedua dilakukan proses transesterifikasi menggunakan katalis basa untuk mengkonversi minyak menjadi biodiesel.
Hasil penelitian proses esterifikasi dengan perbandingan molar metanol terhadap minyak 5:1 dan temperatur 60°C menunjukkan bilangan asam awal minyak goreng bekas sebesar 3,9 mg KOH/g dapat diturunkan menjadi 1,81 mg KOH/g dalam waktu 120 menit. Pada proses transesterifikasi, rendemen biodiesel tertinggi sebesar 89,4% diperoleh pada waktu reaksi 150 menit dengan rasio molar metanol terhadap minyak 6:1. Analisis komponen biodiesel menggunakan kromatografi gas-spektrometer massa (GC-MS) menunjukkan biodiesel terdiri dari 5 (lima) metil ester asam lemak dominan yaitu metil oleat, metil palmitat, metil linoleat, metil stearat dan metil miristat. Selain itu, beberapa parameter biodiesel yang diuji telah memenuhi persyaratan SNI No. 04-7182-2006.

The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO) using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA) content of WCO and followed by base-catalyzed transesterification process for converting WCO to biodiesel as the second step.
The result of esterification process with methanol to oil molar ratio of 5 and temperature of 60°C showed that the initial acid value of WCO of 3.9 mg KOH/g can be decreased to 1.81 mg KOH/g in 120 minutes. The highest yield of biodiesel in transesterification process of 89.4% obtained at reaction time of 150 minutes with methanol to oil molar ratio of 6. The biodiesel produced in the experiment was analyzed by gas chromatography-mass spectrometry (GC-MS), which showed that it mainly contained five fatty acid methyl esters. In addition, the properties of biodiesel showed that all of the fuel properties met the Indonesian National Standard (INS) No. 04-7182-2006 for biodiesel.
"
Depok: Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, 2012
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muhamad Madani
"Permasalahan energi mendorong dikembangkannya bahan bakar alternatif terbarukan yaitu biodiesel. Namun penggunaan biodiesel terkendala karena memiliki kekurangan yaitu rendahnya stabilitas oksidasi. Reaksi oksidasi menyebabkan biodiesel mengalami perubahan sifat sehingga mengakibatkan korosi, penyumbatan jalur bahan bakar, dan pengotoran saat biodiesel digunakan. Oksidasi biodiesel dapat dihindari dengan penambahan antioksidan. Pyrogallol merupakan antioksidan yang memiliki efektivitas paling tinggi dibandingkan antioksidan lain. Akan tetapi, pyrogallol memiliki kekurangan yaitu sulit larut dalam biodiesel. Untuk mengoptimalkan performa pyrogallol dalam meningkatkan stabilitas oksidasi biodiesel maka dispersi pyrogallol harus ditingkatkan.
Pada penelitian ini surfaktan sorbitan monooleate ditambahkan ke dalam biodiesel untuk meningkatkan dispersi pyrogallol karena merupakan surfaktan nonionic yang baik sebagai pengemulsi water in oil. Penambahan sorbitan monooleate dilakukan dengan variasi konsentrasi yang berbeda untuk mengetahui jumlah komposisi sorbitan monooleate terbaik yang dapat meningkatkan stabilitas oksidasi biodiesel. Stabilitas oksidasi biodiesel diukur berdasarkan penambahan angka asam dan viskositas kinematic selama enam belas hari masa penyimpanan.
Hasil penelitian menunjukkan bahwa dengan penambahan surfaktan sorbitan monooleate dapat meningkatkan dispersi pyrogallol dalam biodiesel dan meningkatkan kinerja pyrogallol dalam menjaga stabilitas oksidasi biodiesel. Selain itu konsentrasi surfaktan sorbitan monooleate yang ditambahkan berpengaruh terhadap kinerja antioksidan. Penambahan surfaktan sorbitan monooleate 300 ppm dan pyrogallol 1000 ppm rasio 3:10 merupakan penambahan yang paling baik yang dapat menjaga oksidasi biodiesel.

Energy problems encourage for development of alternative renewable fuel, biodiesel. However usage of biodiesel is obstructed because of its weakness, low oxidation stability. Oxidation reaction makes change of biodiesel properties so it causes corrosion, plugging of fuel lines, and fouling when it is used. Oxidation of biodiesel can be prevented by adding antioxidant. Pyrogallol is one of antioxidant which has the highest effectivity than other antioxidant. However pyrogallol has weakness, it is easier to soluble in water than in biodiesel. To optimize pyrogallol performance in increasing oxidation stability of biodiesel, pyrogallol dispersion need to be improved.
In this research surfactant sorbitan monooelate is added in increasing pyrogallol dispersion because it is nonionic surfactant which is good as emulsifier water in oil. Sorbitan monooelate surfactant is added by varying its concentration to know the best composition of sorbitan monooleate which can increase oxidation stability of biodiesel. Oxidation stability is measured by acid and viscosity in sixteen days of storage.
Result shows that addition of surfactant sorbitan monoolete can increase dispersion of pyrogallol in biodiesel and performance of pyrogallol to keep oxidation stability of biodiesel. Concentration of surfactant sorbitan monooleate which is added also has effect to performance of antioxidant pyrogallol. Adding surfactant sorbitan monooleate 300 ppm and pyrogallol 1000 ppm rasio 3 10 is the best for keep oxidation stability of biodiesel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alan Try Putra Samad
"Perancangan Pabrik biodiesel portable berbahan baku minyak jelantah dilakukan secara simultan dengan mengacu pada standard biodiesel SNI 7182:2012. Produksi biodiesel pada perancangan ini melibatkan proses esterifikasi, transesterifikasi, dekantasi, evaporasi vakum, dan membran ultrafitrasi. Proses esterifikasi mampu mengonversi FFA menjadi FAME sebanyak 90,8% dengan menggunakan 9:1 rasio molar metanol-FFA dan 2,5% massa FFA katalis asam sulfat. Transesterifikasi memberikan yield biodiesel sebesar 90% menggunakan 6:1 rasio molar metanol-trigliserida dan 1% massa trigliserida katalis NaOH. Evaporasi pada sistem vakum 0,01 bar mampu menghasilkan biodiesel dengan kadar metanol hingga 0,5% dan kemurnian metanol 99,9% dengan konsumsi energi yang relatif rendah. Pemurnian biodiesel menggunakan membran ultrafiltrasi membutuhkan energi yang cukup besar namun dapat menghasilkan tingkat kemurnian biodiesel hingga 99,5% serta proses yang relatif singkat. Pabrik biodiesel portable ini mampu menghasilkan 128 liter biodiesel per-batch dengan memroses 18 batch perhari. Pabrik ini diperkirakan mulai beroperasi pada tahun 2017 dan mampu bekerja selama 20 tahun dengan memberikan internal rate of return (IRR) sebesar 17,8 % dengan periode pengembalian pada tahun ke-3, sehingga layak untuk dibangun dan dikomersialisasikan. Analisis sensitivitas mengenai fluktuasi harga bahan baku, produk, jumlah batch proses serta nilai tukar US dollar terhadap rupiah juga dibahas dalam paper ini.

Waste cooking oil based biodiesel portable plant design is running simultaneusly based on biodiesel standardd SNI 7182:2012. Production process of biodiesel in this design involves esterification, transesterification, decantation, vacuum evaporation, and membrane ultrafiltration. The esterification process shows that 90.8% FFA can be converted into FAME by 9:1 molar ratio methanol to FFA using sulfuric acid catalyst 2.5%wt of FFA mass. The transesterification process gives biodiesel?s yield by 90% by 6:1 molar ratio methanol to triglyceride using NaOH catalyst 1%wt of triglyceride mass. The evaporation process in vacuum system 0.01 bar can separate methanol up to 0,5%wt, only by consuming a little energy. Biodiesel purification using membrane ultrafiltration requires a large amount of energy, but can reach up to 99.8% biodiesel purity as well as with a short process. This plant is able to produce 128 litre biodiesel in one batch and process 18 batches per day. This plant will be operated in 2017 and capable for operating for 20 years by providing IRR (internal rate of return) by 17.8% with a payback in the third year that can be commercialy viable. Sensitivity analysis regarding fluctioation in raw material price, product price, and the exchange rate of the US dollar against rupiah disscused in this paper."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65232
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julius Ferdinand
"ABSTRAK
Pada penelitian ini disimulasikan reaktor batch berpengaduk transesterifikasi CPO untuk produksi biodiesel skala pilot. Reaktor yang digunakan adalah tangki berpengaduk. Pengaduk yang digunakan berjenis rushton turbine yang dipasang dari atas tangki. Dalam simulasi ini divariasikan kecepatan rotasi pengaduk yang mana mempengaruhi proses pengadukan. Simulasi dilakukan berdasarkan konsep dinamika fluida komputasional (CFD) dengan mempertimbangkan neraca momentum aliran turbulen k-ε. Adapun hasil simulasi reaktor ini, yaitu volume fraction fasa terdispersi, bilangan reynold, dan pola aliran, jika dibandingan dengan hasil simulasi reaktor skala laboratorium yang terdapat dalam jurnal acuan, yang juga disimulasikan dengan menggunakan CFD, menunjukkan hasil yang baik. Didapatkan bahwa reaktor yang valid untuk produksi biodiesel dalam skala pilot ini memiliki besar diameter dan tinggi yang sama, yaitu 1,257 m, dengan bagian bawah tangki reaktor berbentuk dished-end dan pengaduk yang digunakan berjenis rushton turbine. Selain itu permodelan dan simulasi juga dilakukan untuk reaksi transesterifikasi CPO dengan memperhitungkan pengaruh reaksi samping yang terjadi seperti saponifikasi. Berdasarkan permodelan ini kemudian dilakukan simulasi pengaruh variasi rasio molar metanol-CPO dan variasi suhu reaksi terhadap laju reaksi. Didapatkan bahwa reaksi transesterifikasi dalam kondisi well-mixed membutuhkan waktu antara 1-2 menit.

ABSTRACT
In this study, batch reaktor of CPO (crude palm oil) transesterification for biodiesel production in pilot scale was simulated. Reaktor used in this study is stirred reaktor and the stirrer used in this reaktor is rushton turbine impeller, which was set from the top of the reaktor. In this simulation, rotational velocity of impeller was varied and the effect of this variation on the stirring process was observed. The simulation was carried using the concept of CFD (computational fluid dynamics) considering momentum balance of turbulent flow k-ε. The result from this simulation, which was volume fraction of dispersed phase, reynold number, and flow pattern, if it compared to the simulation of reaktor in laboratory scale, already demonstrate a better result for biodiesel production. From the simulation, the best design of reactor to produce biodiesel in pilot scale, has a dimension of 1,257 m in diameter and height, with rushton turbine as its impeller and dished-end as the bottom of the vessel. Besides that, modelling and simulation of CPO was carried considering the effect of side reactions such as saponification. According to this model, variation of metanol-CPO molar ratio and reaction temperature was simulated to show the effect of this variation on the reaction rate. It was obtained that the transesterification reaction needs approximately 1-2 minutes."
2016
S64323
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fikratannisa Nadhirah
"Nanokomposit CaO−Fe3O4/Al2O3 berhasil disintesis untuk pembuatan biodiesel menggunakan limbah minyak goreng yang didukung dengan karakterisasi menggunakan instrumen FTIR, XRD, SEM, BET, dan TEM pada nanokomposit CaO−Fe3O4/Al2O3. Persentase produk optimum sebesar 91,17% menggunakan nanokomposit CaO−Fe3O4/Al2O3 dengan CaO yang dikalsinasi pada suhu 900 °C, rasio massa CaO/Fe3O4 2:1, dan rasio massa CaO/Fe3O4 : Al2O3 (1:1) dengan waktu reaksi 2 jam, jumlah katalis 3%, rasio methanol terhadap minyak (9:1). Kandungan asam lemak pada biodiesel dianalisa menggunakan GC-MS dan sifat fisik biodiesel hasil sintesis sesuai standar SNI dan ASTM dengan massa jenis 0,8852 g/mL, kadar asam lemak bebas 0,0346%, dan angka asam sebesar 0,6885 mg/KOH/g. Studi kinetika reaksi mengikuti pseudo orde pertama dengan hukum laju reaksi v =k[TGA]=0,0117 menit^(-1) (TGA)dengan nilai konstanta laju reaksi 0,0117 menit-1.

CaO−Fe3O4/Al2O3 nanocomposites were successfully synthesized for biodiesel production using waste cooking oil supported by characterization using FTIR, XRD, SEM, BET, and TEM instruments on CaO−Fe3O4/Al2O3 nanocomposites. The optimum product percentage was 91.17% using CaO−Fe3O4/Al2O3 nanocomposite with CaO calcined at 900°C, CaO/Fe3O4 mass ratio of 2:1, and CaO/Fe3O4 mass ratio: Al2O3 (1:1) with reaction time of 2 hours, catalyst amount of 3%, methanol to oil ratio (9:1). The physical properties of the synthesized biodiesel were in accordance with SNI and ASTM standards with a density of 0.8852 g/mL, a free fatty acid content of 0.0346%, and an acid number of 0.6885 mg/KOH/g. The reaction kinetics study follows the first-order pseudo with the reaction rate law v =k[TGA]=0,0117 menit^(-1) with a reaction rate constant value of 0.0117 min-1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kania Zara
"

Produksi biodiesel secara konvensional memiliki beberapa kekurangan dalam segi hasil produksi, waktu maupun bahan baku. Dalam penelitian ini, diuji produksi biodiesel/FAME menggunakan teknologi reaktor DBD Plasma yang telah terbukti dapat menghasilkan biodiesel dengan waktu yang lebih cepat dan bahan baku yang lebih sedikit dalam kondisi ambien. Bahan baku dari penelitian ini adalah campuran minyak jelantah dan kastroli yang dilarutkan oleh pelarut parafin berupa Pertamina DEX dan n-heksadekana ditambah dengan metanol. Gas argon berfungsi sebagai carrier dalam pembentukan pijar plasma. Elektron berenergi tinggi berperan sebagai katalis sehingga tidak dibutuhkan katalis asam/basa tambahan. Variasi yang dilakukan adalah suhu umpan, pelarut reaktan dan frekuensi EPT (Electronic Power Transformer). Didapatkan 2 senyawa produk utama yang dihasilkan proses sintesis yaitu FAME dan Greendiesel. Kondisi optimum didapatkan pada suhu 400C dengan pelarut Pertamina DEX dan frekuensi 25kHz menghasilkan yield FAME dan Greendiesel tertinggi sebesar 60.71% dan 1.59%.


Biodiesel production using conventional method has many drawbacks in many aspects including production results, time efficiency, and raw material aspects. In this research, biodiesel/FAME production is tested using DBD plasma reactor technology that has been proven to produce biodiesel with less production time and raw materials in ambient condition. A blend of used palm cooking oil and castor oil diluted in different paraffin solvent such as Pertamina DEX and n-heksadecane with an addition of methanol are used as the raw materials in this research. Argon gas is used as a carrier gas to boost the formation of the plasma discharge. High energy electron acts as a catalyst. Hence, additional  catalyst such as acid and base is not needed. The variation variables in this research is the feed temperature, kinds of solvent and the EPT (Electronic Power Transformer) frequency. The results shows there are two main components in the product that is FAME and Greendiesel. The optimum condition is achieve at 400C and 25kHz with Pertamina DEX as the solvent with the highest FAME and Greendiesel Yield at 60.71% and 1.59%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harahap, Andre Fahriz Perdana
"Penggunaan Tandan Kosong Kelapa Sawit TKKS sebagai bahan baku bioetanol generasi kedua menghasilkan limbah lindi hitam yang kandungan utamanya adalah lignin. Sebagai senyawa polimer fenolik, gugus hidroksifenolik pada lignin memungkinkannya bertindak sebagai antioksidan. Pada penelitian ini, isolat lignin lindi hitam diuji aktivitasnya sebagai antioksidan pada biodiesel. Lignin diperoleh dengan pertama-tama melakukan praperlakuan TKKS dengan metode organosolv pada suhu 170 C selama 2,5 jam dan dilanjutkan dengan melakukan isolasi lignin teknis. Isolat lignin ditambahkan ke dalam biodiesel dengan variasi konsentrasi 500, 1000, dan 1500 ppm. Lignin komersial dan antioksidan sintetik butylated hydroxytoluene BHT digunakan sebagai kontrol positif. Uji stabilitas oksidasi biodiesel dilakukan dengan metode Rancimat. Sedangkan uji aktivitas antioksidan dilakukan dengan menghitung bilangan asam, bilangan peroksida, dan viskositas kinematik biodiesel pada pekan ke-0, 1, 2, 3, dan 4. Karakteristik isolat lignin organosolv yang diperoleh dari penelitian ini meliputi: rendemen lignin 13,7 kadar lignin 64,5 bobot ekuivalen 1822,1 g/ekuivalen dan kadar hidroksifenolik 6,8. Spektrum FTIR lignin organosolv menunjukkan kesamaan pita serapan dengan lignin komersial. Penambahan lignin organosolv, lignin komersial, dan BHT mampu menghambat laju oksidasi biodiesel dengan urutan aktivitas antioksidan dari yang terbesar hingga yang terkecil secara berturut-turut yakni BHT, lignin komersial, dan lignin organosolv.

Utilization of Palm Oil Empty Fruit Bunch POEFB as second generation bioethanol feedstock produces black liquor waste which the main content is lignin. As phenolic polymer compound, the hydroxyphenolic group in lignin enables it to act as antioxidant. In this study, lignin isolate from black liquor was tested for their activity as antioxidants in biodiesel. Lignin was obtained by first performing POEFB pretreatment by organosolv method at 170 C for 2.5 hours and followed by technical lignin isolation. Lignin isolate was added to biodiesel with variation of concentration 500, 1000, and 1500 ppm. Commercial lignin and synthetic antioxidant butylated hydroxytoluene BHT were used as positive control. The biodiesel oxidation stability test was performed by Rancimat method. While antioxidant activity test was done by identifying the acid number, peroxide number, and kinematic viscosity of biodiesel at week 0, 1, 2, 3, and 4. Characteristics of organosolv lignin isolate obtained from this research include lignin yield 13,7 64.5 lignin content equivalent weight of 1822.1 g equivalent and hydroxyphenolic content of 6.8. The organosolv lignin FTIR spectrum shows the similarity of absorption bands to commercial lignin. The addition of organosolv lignin, commercial lignin, and BHT are able to inhibit the rate of oxidation of biodiesel with the sequence of antioxidant activity from the largest to the smallest successively BHT, commercial lignin, and organosolv lignin."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail Ghulam Halim
"Upaya intens dilakukan oleh pemerintah Indonesia dalam mengatasi persoalan defisit kebutuhan diesel domestik dengan mewajibkan pencampuran biodiesel pada solar hingga 20 pada tahun 2016. Namun, biodiesel yang ada memiliki beberapa kekurangan diantaranya penggunaan minyak nabati pangan sebagai bahan baku produksi. Simulasi sintesis renewable diesel berbasis minyak nabati non-pangan dengan rute produksi hidrodeoksigenasi trigliserida langsung dibuat dengan simulator Unisim Design R 390.1 pada penelitian ini. Dari simulasi didapatkan kondisi operasi optimal untuk sintesis renewable diesel yaitu pada tekanan 30 bar dan suhu 320?-380?C, dengan konversi 71.50 , yield 45.5 , dan selektivitas 38.3 . Selain itu, diperoleh pula tiga jenis minyak nabati non-pangan yang sesuai untuk menjadi alternatif bahan baku pembuatan renewable diesel di Indonesia, yaitu minyak kosambi, minyak nyamplung, dan minyak kemiri sunan.

Intense efforts is exerted by the Indonesian government in solving the domestic diesel demand deficit problem by obligating the mixing of biodiesel in diesel up to 20 on 2016. However, biodiesel has some disadvantages such as the use of edible oils as raw materials for production. Synthesis simulation of non edible vegetable oil based renewable diesel with direct triglyceride hydrodeoxigenation production route was made with Unisim Design R 390.1 simulator in this research. From the simulation, the optimum operating conditions for renewable diesel synthesis reached are 30 bar and temperature 320 380 C, with 71.50 conversion, 45.5 yield and 38.3 selectivity. In addition, three types of non food vegetable oils are also suitable to be an alternative raw material for making renewable diesel in Indonesia, namely kosambi oil, nyamplung oil, and siri kemiri oil."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>