Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173308 dokumen yang sesuai dengan query
cover
Mubarik Ahmad
"Forum diskusi asinkron adalah salah satu media pembelajaran kolaboratif daring yang mampu mendorong pemikiran kritis, pertukaran gagasan, dan pembentukan pengetahuan. Analisis konten merupakan metode ilmiah yang dapat digunakan untuk mengidentifikasi keterampilan berpikir kritis dari transkrip pada forum diskusi asinkron. Metode analisis konten konvensional membutuhkan tahapan pengodean manual yang membutuhkan banyak waktu dan tenaga. Hal ini dapat mengakibatkan pengajar terlambat dalam memberikan intervensi instruksional karena informasi keterampilan berpikir kritis tidak dapat diperoleh secara cepat.
Penelitian ini mengacu pada kerangka kerja Community of Inquiry (CoI) di mana keterampilan berpikir kritis dioperasionalisasikan melalui empat level dalam kehadiran kognitif yaitu pemantik diskusi, eksplorasi, integrasi, dan resolusi. Tujuan penelitian adalah mengembangkan model klasifikasi berbasis machine learning yang mampu menganalisis secara otomatis kehadiran kognitif pada transkrip diskusi berbahasa Indonesia. Desain penelitian menggunakan metode campuran kuantitatif dan kualitatif. Data eksperimen berjumlah 1.200 pesan diskusi dari mata kuliah Aljabar Linear di lingkungan pembelajaran bauran.
Hasil penelitian menunjukkan bahwa kesiapan mahasiswa dalam mengelola pembelajaran dan lingkungan e-learning berpengaruh signifikan terhadap pengembangan kehadiran sosial dan kehadiran kognitif. Dataset level kehadiran kognitif pada transkrip diskusi asinkron dibangun dengan metode analisis konten yang reliabel kategori hampir sempurna (Cohen’s kappa = 0,88). Eksperimen pengembangan model analisis kehadiran kognitif menggunakan sepuluh basis algoritma yaitu XGBoost, Random Forest, Support Vector Machine, Logistic Regression, Naïve Bayes, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), IndoBERT-base, IndoBERT-large dan XLM-RoBERTa. Model berbasis IndoBERT-large memiliki performa terbaik dengan akurasi sebesar 0,825. Prototipe sistem Cognipresa (cognitive presence analytics) telah dikembangkan untuk memfasilitasi pengajar dengan menganalisis kehadiran kognitif mahasiswa dalam diskusi secara otomatis. Evaluasi sistem menunjukkan hasil yang menjanjikan dari sisi usability dengan nilai System Usability Scale (SUS) sebesar 80,83.

The asynchronous discussion forum serves as a collaborative online learning platform capable of stimulating critical thinking, exchanging ideas, and shaping knowledge. Content analysis is a scientific method that can be employed to identify critical thinking skills from transcripts in asynchronous discussion forums. Conventional content analysis methods entail manual encoding stages, which consume a significant amount of time and effort. This may lead to instructors being delayed in providing instructional interventions due to the inability to swiftly obtain information on critical thinking skills.
This study references the Community of Inquiry (CoI) framework, where critical thinking skills are operationalized through four levels of cognitive presence: triggering event, exploration, integration, and resolution. The research's objective is to develop a machine learning-based classification model capable of automatically analyzing cognitive presence in Indonesian-language discussion transcripts. The research design incorporates both quantitative and qualitative methods. The experimental data consists of 1,200 discussion messages from the Linear Algebra course in a blended learning environment.
The research findings indicate that students' preparedness in managing learning and e-learning environment significantly influences the development of social presence and cognitive presence. The dataset for cognitive presence at the transcript of asynchronous discussions was constructed using a content analysis method with a reliably almost perfect category (Cohen’s kappa = 0.88). An experimental development of the cognitive presence analysis model was conducted using ten algorithmic bases, namely XGBoost, Random Forest, Support Vector Machine, Logistic Regression, Naïve Bayes, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), IndoBERT-base, IndoBERT-large, and XLM- RoBERTa. The IndoBERT-large-based model demonstrated the best performance with an accuracy of 0.825. A prototype system called Cognipresa (cognitive presence analytics) has been developed to facilitate educators in automatically analyzing students' cognitive presence in discussions. The system evaluation indicates promising results in terms of usability, with a System Usability Scale (SUS) score of 80.83.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Inigo Ramli
"Model bahasa dapat mempelajari struktur suatu bahasa manusia menggunakan korpus yang tidak terstruktur. Namun, model bahasa secara umum belum dapat mempelajari pengetahuan faktual yang direpresentasikan oleh knowledge graph. Terdapat beberapa usaha untuk membuat model bahasa yang dapat mempelajari pengetahuan faktual seperti KEPLER. Sayangnya, belum terdapat penelitian yang komprehensif mengenai integrasi pengetahuan faktual terhadap pelatihan model bahasa Indonesia. Penelitian ini mengajukan model bahasa Indonesia baru bernama IndoKEPLER yang melatih model bahasa Indonesia yang sudah ada dengan korpus Wikipedia Bahasa Indonesia dan memanfaatkan pengetahuan faktual dari Wikidata. Selain itu, penelitian ini juga mengajukan metode knowledge probing baru untuk menguji pemahaman faktual suatu model bahasa Indonesia. Hasil eksperimen penelitian ini menunjukkan bahwa pelatihan model IndoKEPLER dapat meningkatkan pemahaman faktual suatu model bahasa Indonesia.

Pretrained language models have the ability to learn the structural representation of a natural language by processing unstructured textual data. However, the current language model design lacks the ability to learn factual knowledge from knowledge graphs. Several attempts have been made to address this issue, such as the development of KEPLER. Unfortunately, such knowledge enhanced language model is not yet available for the Indonesian language. In this experiment, we propose IndoKEPLER: a pretrained language model trained using Wikipedia Bahasa Indonesia and Wikidata. We also create a new knowledge probing benchmark named IndoLAMA to test the ability of a language model to recall factual knowledge. This experiment shows that IndoKEPLER has a higher ability to recall factual knowledge compared to the text encoder it’s based on."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajra Faki Ali
"Penelitian ini mengusulkan pengembangan model monolingual untuk Natural Language Inference (NLI) dalam bahasa Swahili untuk mengatasi keterbatasan model multibahasa saat ini. Studi ini melakukan fine-tuning pada model SwahBERT yang sudah dilatih sebelumnya untuk menangkap hubungan semantik dan nuansa kontekstual unik dalam bahasa Swahili. Komponen penting dari penelitian ini adalah pembuatan dataset SwahiliNLI, yang dirancang untuk mencerminkan kompleksitas bahasa Swahili, sehingga menghindari ketergantungan pada teks bahasa Inggris yang diterjemahkan. Selain itu, kinerja model SwahBERT yang telah di-fine-tune dievaluasi menggunakan dataset SwahiliNLI dan XNLI, dan dibandingkan dengan model multibahasa mBERT. Hasilnya menunjukkan bahwa model SwahBERT mengungguli model multibahasa, mencapai tingkat akurasi sebesar 78,78% pada dataset SwahiliNLI dan 73,51% pada dataset XNLI. Model monolingual juga menunjukkan presisi, recall, dan skor F1 yang lebih baik, terutama dalam mengenali pola linguistik dan memprediksi pasangan kalimat. Penelitian ini menekankan pentingnya menggunakan dataset yang dihasilkan secara manual dan model monolingual dalam bahasa dengan sumber daya rendah, memberikan wawasan berharga untuk pengembangan sistem NLI yang lebih efisien dan relevan secara kontekstual, sehingga memajukan pemrosesan bahasa alami untuk bahasa Swahili dan berpotensi menguntungkan bahasa lain yang menghadapi keterbatasan sumber daya serupa.

This research proposes the development of a monolingual model for Natural Language Inference (NLI) in Swahili to overcome the limitations of current multilingual models. The study fine-tunes the pre-trained SwahBERT model to capture Swahili's unique semantic relationships and contextual nuances. A critical component of this research is the creation of a SwahiliNLI dataset, crafted to reflect the intricacies of the language, thereby avoiding reliance on translated English text. Furthermore, the performance of the fine-tuned SwahBERT model is evaluated using both SwahiliNLI and the XNLI dataset, and compared with the multilingual mBERT model. The results reveal that the SwahBERT model outperforms the multilingual model, achieving an accuracy rate of 78.78% on the SwahiliNLI dataset and 73.51% on the XNLI dataset. The monolingual model also exhibits superior precision, recall, and F1 scores, particularly in recognizing linguistic patterns and predicting sentence pairings. This research underscores the importance of using manually generated datasets and monolingual models in low-resource languages, providing valuable insights for the development of more efficient and contextually relevant NLI systems, thereby advancing natural language processing for Swahili and potentially benefiting other languages facing similar resource constraints."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Heninggar Septiantri
"Ambiguitas adalah masalah yang seringkali ditemui dalam pemrosesan bahasa alami oleh komputer. Word Sense Disambiguation (WSD) adalah upaya untuk menentukan makna yang tepat dari sebuah kata yang ambigu. Berbagai penelitian tentang WSD telah banyak dikerjakan, namun penelitian WSD untuk bahasa Indonesia belum banyak dilakukan. Ketersediaan korpus paralel berbahasa Inggris-Indonesia dan sumber pengetahuan bahasa berupa WordNet bahasa Inggris dan bahasa Indonesia dapat dimanfaatkan untuk menyediakan data pelatihan untuk WSD dengan metode Cross-Lingual WSD (CLWSD). Data pelatihan ini kemudian dijadikan input untuk klasifikasi dengan algoritma Naive Bayes, sehingga model klasifikasinya dapat digunakan untuk melakukan monolingual WSD untuk bahasa Indonesia.
Evaluasi klasifikasi menunjukkan rata-rata akurasi hasil klasifikasi lebih tinggi dari baseline. Penelitian ini juga menggunakan stemming dan stopwords removal untuk mengetahui bagaimana efeknya terhadap klasifikasi. Penggunaan stemming menaikkan rata-rata akurasi, sedangkan penerapan stopwords removal menurunkan rata-rata akurasi. Namun pada kata yang memiliki dua makna dalam konteks yang cukup jelas berbeda, stemming dan stopwords removal dapat menaikkan rata-rata akurasi.

Ambiguity is a problem we frequently face in natural languange processing. Word Sense Disambiguation (WSD) is an attempt to decide the correct sense of an ambiguous word. Various research in WSD have been conducted, but research in WSD for Indonesian Language is still rare to find. The availability of parallel corpora in English and Indonesian language and WordNet for both language can be used to provide training data for WSD with Cross-Lingual WSD (CLWSD) method. This training data can be used as input to the classification process using Naive Bayes classifier.
The model resulted by the classification process is then used to do monolingual WSD for Indonesian language. The whole process in this research results in higher accuracy compared to baseline. This research also includes the use of stemming and stopwords removal. The effect of stemming is increasing the average accuracy, whereas stopwords removal is decreasing average accuracy. Nevertheless, for ambiguous words that have distinct context of usage, the use of stemming and stopwords removal can increase average accuracy."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Taqiyuddin
"Penggunaan analisis sentimen semakin umum digunakan. Dalam pengembangan analisis sentimen ini banyak tantangan yang perlu dihadapi. Karena analisis ini termasuk Natural Language Processing NLP, hal yang perlu dimengerti adalah kompleksitas bahasa. Dengan berkembangnya teknologi Artificial Neural Network, ANN semakin banyak permasalahan yang bisa diselesaikan.
Ada banyak contoh struktur ANN dan untuk penelitian ini yang digunakan adalah Convolutional Neural Network CNN dan Recurrent Neural Network RNN. Kedua jenis ANN tersebut sudah menunjukkan performa yang baik untuk beberapa tugas NLP. Maka akan dilakukan analisis sentimen dengan menggunakan kedua jenis ANN tersebut dan dibandingkan kedua performa ANN tersebut. Untuk data yang akan digunakan diambil dari publikasi stanford dan untuk mengubah data tersebut bisa digunakan pada ANN digunakan word2vec.
Hasil dari analisis menunjukkan bahwa RNN menunjukkan hasil yang lebih baik dari CNN. Walaupun akurasi tidak terlalu terlihat perbedaan yaitu pada RNN yang mencapai 88.35 0.07 dan CNN 87.11 0.50, tetapi waktu pelatihan RNN hanya membutuhkan waktu 8.256 detik sedangkan CNN membutuhkan waktu 544.366 detik.

Term of sentiment analysis become popular lately. There are many challenges developing sentiment analysis that need to be addressed. Because this kind analysis is including Natural Language Processing, the thing need to understand is the complexity of the language. With the current development of Artificial Neural Network ANN, more problems can be solved.
There are many type of ANN and for this research Convolutional Neural Network CNN and Recurrent Neural Network will be used. Both already showing great result for several NLP tasks. Data taken from stanford publication and transform it with word2vec so could be used for ANN.
The result shows that RNN is better than CNN. Even the difference of accuracy is not significant with 88.35 0.07 for RNN and 87.11 0.50 for CNN, the training time for RNN only need 8.256 secods while CNN need 544.366 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68746
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alvarado, Sergio Jose, 1957-
Boston: Kluwer, 1990
006.3 ALV u
Buku Teks SO  Universitas Indonesia Library
cover
"This volume constitutes the refereed proceedings of the Spanish Conference, IberSPEECH 2012: Joint VII “Jornadas en Tecnología del Habla” and III Iberian SLTech Workshop, held in Madrid, Spain, in November 21-23, 2012. The 29 revised papers were carefully reviewed and selected from 80 submissions. The papers are organized in topical sections on speaker characterization and recognition, audio and speech segmentation, pathology detection and speech characterization, dialogue and multimodal systems, robustness in automatic speech recognition, applications of speech and language technologies."
Berlin: Springer-Verlag, 2012
e20408240
eBooks  Universitas Indonesia Library
cover
Muhammad Adani Osmardifa
"Tingginya tingkat penggunaan media sosial, membuat media sosial sering digunakan untuk menjadi salah satu sumber data pada banyak penelitian. Salah satu penelitian yang paling sering digunakan adalah analisis sentimen. Analisis sentimen adalah bidang studi yang menganalisis pendapat, sentimen, evaluasi, penilaian, sikap, dan emosi orang terhadap entitas seperti produk, layanan, organisasi, individu, isu, peristiwa, topik, dan atributnya. Pada penelitian ini, penulis menggunakan model Bidirectional Encoder Representation from Transformers (BERT) pada permasalahan analisis sentimen. Pada penelitian ini model BERT juga dibandingkan dengan dua model dasar lainnya, yaitu Convolutional Neural Network (CNN) dan Long-Short Term Memory (LSTM). Agar model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan pada lifelong learning. Hasilnya, BERT mengalami penurunan akurasi sebanyak 8,21% dari 89,17% menjadi 80,96% pada uji loss of knowledge dan mengalami kenaikan sebesar 6,67% dari 82,93% menjadi 89,60% pada uji transfer of knowledge.

High level usage of social media makes this platform frequently used as one of the sources for educational studies such as sentiment analysis. Sentiment analysis is a field of study that analyzes people's opinions, sentiments, evaluations, judgments, attitudes, and emotions towards entities such as products, services, organizations, individuals, issues, events, topics, and their attributes. In this study, author will use Bidirectional Encoder Representation from Transformers (BERT) model for sentiment analysis problem. BERT will also be compared with two others basic model which is Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM). In order for the model to learn continuously from several data domains, lifelong learning is also implemented in the model. As a result, BERT accuracy decreased 8.21% from 89,17% to 80,96% in loss of knowledge test and increased 6.67% from 82,93% to 89,60% in transfer of knowledge test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricky Nauvaldy Ruliputra
"ABSTRAK
Banyaknya pengguna internet di Indonesia berkontribusi pada potensi pertumbuhan Indonesia secara umum terutama dalam sisi ekonomi digital. Pesatnya pertumbuhan ini mendorong pemerintah untuk merencanakan revolusi industri 4.0. Pada praktisnya, landasan dalam membangun sistem yang diperlukan dalam revolusi industri 4.0 adalah teknologi artificial intelligence (AI). Inovasi dalam bidang AI banyak datang dari perusahaan startup. Meskipun pemanfaatan AI membawa banyak manfaat, 60% dari perusahaan belum memanfaatkan teknologi tersebut pada area fungsional seperti layanan chatbot, robot layanan pelanggan, otomasi proses robotik, monitoring media, dan pengamatan sosial. Celah ini perlu disikapi melihat bahwa 89% dari pengguna internet di Indonesia memanfaatkan layanan chatting, dan 87% lebih untuk media sosial. Pemanfaatan AI dapat dilakukan salah satu caranya adalah dengan menggunakan jasa perusahaan yang bergerak di bidang AI, namun pemetaan dari startup yang bergerak di bidang AI belum tersedia. Selain itu, dampak praktis dari penerapan AI di Indonesia perlu untuk dilakukan sebagai motivasi dan juga pengetahuan bagi pihak yang belum menerapkan AI sebagai bagian dari proses bisnis perusahaan. Penelitian ini melakukan pemetaan terhadap perusahaan startup di Indonesia yang bergerak di bidang AI, dan didapatkan 68 perusahaan startup yang terpetakan. Selain itu, penelitian ini juga melakukan identifikasi dampak dari penerapan AI bagi perusahaan dari perspektif startup penyedia layanan dengan melakukan wawancara kepada level-C dan manajer produk perusahaan penyedia layanan, dan mendapatkan bahwa dampak yang terjadi dapat dikategorikan ke dalam delapan aspek, yaitu motivasi, keuntungan, kepentingan, perubahan strategi, tantangan, kepuasan, kepercayaan, dan etika. Rekomendasi yang dapat diberikan kepada perusahaan klien terkait dengan penerapan NLP meliputi otomasi, kolaborasi, pengembangan berlanjut, humanisasi, melihat pasar, melihat peluang, tahu tujuan, siap secara teknis, dan berani mencoba.

ABSTRACT
The large number of internet users in Indonesia contributes to Indonesia's growth potential in general, especially in the digital economy. This rapid growth urged the government to plan for the industrial 4.0 revolution. In practice, the basis for building industrial 4.0 system is artificial intelligence (AI) technology. Innovations in the field of AI come from many startup companies. Despite of many benefits obtained from the use of AI, 60% of the companies have not utilized the technology in functional areas such as chatbot services, customer service robots, automation of robotic processes, media monitoring, and social observation. This gap needs to be addressed considering that more than 89% of internet users in Indonesia utilize chat services, and more than 87% of them use it for social media. The use of AI can be done one way is to use the services of companies engaged in AI. However, startup mapping from AI-based startups is not yet available. In addition, the practical impact of implementing AI in Indonesia needs to be done as motivation and knowledge for those who have not implemented AI as part of the company's business processes. This research mapped the startups in Indonesia who are engaged in AI, and obtained 68 mapped startup companies. In addition, this study also evaluates the implementation of AI for companies from the perspective of the implementor by conducting interviews with C-Levels and product managers of the service provider, and found that the impacts can be categorized into eight categories, namely motivation, profit, interest, change in strategy, competition, satisfaction, trust, and ethics. Recommendations is given to companies related to NLP related to automation, collaboration, accepted development, humanization, looking at the market, seeing opportunities, knowing goals, preparing technically, and dare to try.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Vitas, Duško
"This white paper is part of a series that promotes knowledge about language technology and its potential. This analysis focused on the 23 official European languages as well as other important national and regional languages in Europe. The results of this analysis suggest that there are many significant research gaps for each language. A more detailed expert analysis and assessment of the current situation will help maximise the impact of additional research and minimize any risks. META-NET consists of 54 research centres from 33 countries that are working with stakeholders from commercial businesses, government agencies, industry, research organisations, software companies, technology providers and European universities. Together, they are creating a common technology vision while developing a strategic research agenda that shows how language technology applications can address any research gaps by 2020."
Berlin: Springer, 2012
e20420604
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>