Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 161379 dokumen yang sesuai dengan query
cover
Fikri Afif Musyaffa
"Spam email merupakan salah satu masalah yang sangat sering dialami dalam komunikasi digital. Penelitian ini bertujuan untuk membandingkan efektifitas dua algoritma klasifikasi Naïve Bayes dan Support Vector Machine (SVM) dalam mendeteksi email spam. Tahapan penelitian dimulai dari pengumpulan data, pemrosesan teks seperti penghapusan angka, tanda baca, dan huruf kapital, penghapusan kata-kata umum, stemming, dan transformasi teks menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF). Dataset dibagi menjadi dua bagian yaitu data latih dan data uji dengan perbandingan 80% data latih dan 20% data uji. Hyperparameter yang digunakan pada metode Naive Bayes adalah nilai alpha, sedangkan pada SVM adalah nilai C, gamma dan kernel Radial Basis Function (RBF). Evaluasi menggunakan parameter metrik akurasi, presisi, recall, dan F1 score. Hasil penelitian menunjukkan metode SVM dengan hyperparameter tuning dan teks preprocessing mendapatkan nilai akurasi 98,74% sedangkan metode naïve bayes hanya 98,35%. Sehingga dapat disimpulkan bahwa metode Support Vector Machine lebih efektif dibandingkan metode Naïve Bayes dalam mendeteksi email spam.

Spam email is one of the most frequently encountered issues in digital communication. This study aims to compare the effectiveness of two classification algorithms, Naïve Bayes and Support Vector Machine (SVM), in detecting spam emails. The research stages begin with data collection, followed by text processing such as removing numbers, punctuation, and capital letters, removing common words, stemming, and text transformation using the Term Frequency-Inverse Document Frequency (TF-IDF) method. The dataset is divided into two parts: training data and testing data, with a ratio of 80% training data and 20% testing data. The hyperparameter used for the Naïve Bayes method is the alpha value, while for SVM, the hyperparameters are the values of C, gamma, and the Radial Basis Function (RBF) kernel. Evaluation is conducted using accuracy, precision, recall, and F1 score metrics. The results show that the SVM method, with hyperparameter tuning and text processing, achieved an accuracy of 98.74%, whereas the Naïve Bayes method only achieved 98.35%. Therefore, it can be concluded that the Support Vector Machine method is more effective than the Naïve Bayes method in detecting spam emails."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Glorya Khoirunnissa
"Kategori email dapat diklasifikasikan dengan menggunakan pemrosesan bahasa alami (natural language processing) dan machine learning untuk mempelajari pola kata pada email. Model yang digunakan adalah support vector machine, multinomial naïve bayes, dan random forest dan digunakan teknik oversampling berupa random oversampling, synthetic minority over-sampling (SMOTE), dan adaptive synthetic sampling (ADASYN) untuk menyeimbangkan distribusi kelas dan meningkatkan performa pada model. Hasil yang diperoleh bahwa teknik ADASYN menghasilkan performa terbaik dalam klasifikasi email yang divalidasi dengan k-fold cross-validation (k=7) dibandingkan dua teknik lainnya. Rata-rata akurasi mencapai 97.87% pada support vector machine, sedangkan multinomial naive bayes 77.97% , dan random forest 95.94% dengan menggunakan teknik ADASYN.

Email categories can be classified using natural language processing (NLP) and machine learning to learn word patterns in emails. The models used are support vector machine, multinomial naïve Bayes, and random forest. Oversampling techniques such as random oversampling, synthetic minority over-sampling (SMOTE), and adaptive synthetic sampling (ADASYN) are employed to balance the class distribution and improve model performance. The results show that the ADASYN technique achieves the best performance in email classification validated with k-fold cross-validation (k=7) compared to the other two techniques. The average accuracy reaches 97.87% for support vector machine, 77.97% for multinomial naïve Bayes, and 95.94% for random forest when using the ADASYN technique."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teuku Mohamad Anshar Lotan
"ABSTRAK
Tujuan dari permasalahan filtrasi spam adalah mengidentifikasi sebuah e-mail sebagai spam atau bukan spam. Dengan berkembangnya machine learning, semakin banyak permasalahan yang dapat diselesaikan. Salah satunya adalah filtrasi spam. Filtrasi e-mail spam dapat dilakukan dengan bantuan klasifikasi biner dengan machine learning untuk pengklasifikasiannya. Dalam penelitian ini akan menggunakan regresi logistik dan perceptron untuk melakukan proses filtrasi spam. Data yang digunakan menggunakan dataset Enron Spam. Hasil dari analisis menunjukkan bahwa regresi logistik menunjukkan hasil yang lebih baik dari perceptron. Di mana akurasi regresi logistik mencapai 97,02, sedangkan tingkat akurasi perceptron adalah 95,54, tetapi waktu pelatihan perceptron hanya membutuhkan waktu 3,8 sekon, sedangkan regresi logistik membutuhkan waktu 780,94 sekon.

ABSTRACT
The goal of spam filtering is to identify an e mail as spam or not spam. With the rapid development of machine learning, more problem can be solved. One of it is spam filtration. E mail spam filtering can be done with the help of binary classifier using machine learning for the classification. This research would use logistic regression and perceptron technique to filter spam. Data taken from Enron Spam dataset. The result indicate that logistic regression show better result than perceptron. Whereas the accuracy from logistic regression could reach 97,02, while accuracy from perceptron is 95,54, meanwhile the training time for perceptron takes only 3,8 second, while logistic regression takes about 780,94 second. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Email merupakan bentuk komunikasi bisnis yang sifatnya cepat, murah dan mudah digunakan, terutama untuk pesan-pesan yang dikirim dalam perusahaan (
internal message). Fasilitas ini sangat rentan terhadap berbagai gangguan spam, diantaranya adalah banyaknya spam pada inbox user serta dikeluhkannya beberapa email yang dikirim masuk ke dalam junk mail (keranjang sampah) yang mengakibatkan terganggunya komunikasi. Selain itu akan mengakibatkan pemborosan sumber daya jaringan serta waktu dan tenaga yang ada. Mengingat spam adalah suatu masalah dengan berbagai macam faktor, maka perlu upaya untuk mengatasi permasalahan tersebut baik dari sisi pemakai email maupun dari sisi pengelolanya, permasalahan ini dapat diatasi melalui pembenahan pada sisi manajemen email yang dapat dilakukan melalui segi teknis seperti adanya sistem filtering dan blocking.
"
621 DIRGA 12:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Fajar Milleano Mufianto
"Penggunaan email dalam berkomunikasi dan melakukan transaksi tidak dapat dihindari di era ini. Email memegang peranan penting dalam perkembangan Internet sekarang. Karena pentingnya email, maka semakin banyak pula penjahat yang berusaha mengeksploitasi email untuk kepentingan pribadi. Salah satu bentuk eksploitasi tersebut adalah pengiriman email yang tidak diinginkan (spam email). Email spam yang masuk ke kotak email pengguna dapat menimbulkan bahaya dan kerugian terhadap pengguna tersebut. Untuk mengatasinya diperlukan sebuah mekanisme penyaringan email spam sehingga tidak membahayakan pengguna. Melalui aplikasi, email akan dipilah dan apabila dikategorikan sebagai email spam, maka akan diisolasi ke tempat khusus. Aplikasi yang dipilih adalah aplikasi yang bersifat open source, sehingga mudah untuk dicapai dan digunakan oleh banyak orang seperti Apache SpamAssassin dan Rspamd. Tujuan dari Skripsi ini adalah untuk melihat seberapa efektif aplikasi penyaring spam berbasis open source untuk mengklasifikasikan dan mencegah masuknya email spam ke kotak masuk pengguna.

The use of email in communicating and making transactions is unavoidable in this era. Email plays an important role in the development of the Internet today. Due to the importance of email, more and more criminals are trying to exploit email for personal gain. One form of exploitation is sending unsolicited email (spam email). Spam email that enter a user's mailbox can cause harm and loss to the user. To overcome this, a spam email filtering mechanism is needed so that it does not endanger users. Through the application, the email will be sorted and if it is categorized as spam, it will be isolated to a special place. The chosen application is an application that is open source, so it is easy to reach and use by many people such as Apache SpamAssassin and Rspamd. The purpose of this Thesis is to see how effective an open source based spam filter application is in classifying and preventing spam emails from entering users' inboxes."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jefka Dhammananda
"Pesatnya perkembangan teknologi informasi dan komunikasi menuntut adanya inovasi dalam pengembangan aplikasi agar dapat mengikuti perkembangan yang cepat tersebut. Segari adalah salah satu penyedia layanan supermarket online yang populer di Indonesia. Segari merupakan perusahaan yang berlandasan customer centric dan mempunyai nilai Be Obsessed with our Customers, sangat mengedepankan kebutuhan dari pelanggannya. Minimnya sumber daya manusia dan banyaknya ulasan pelanggan yang perlu di analisis menghambat proses penggalian informasi dari ulasan pelanggan tersebut, sehingga diperlukan model pembelajaran mesin yang dapat secara otomatis melakukan analisis sentimen untuk mengklasifikasikan ulasan menjadi sentimen positif atau negatif. Informasi yang diambil dari analisis sentimen dapat digunakan sebagai referensi untuk menjaga kualitas layanan berdasarkan sentimen positif, sedangkan hasil dari sentimen negatif dapat digunakan sebagai bahan evaluasi untuk meningkatkan layanan dan aplikasi Segari. Dalam penelitian ini, peneliti membahas implementasi model analisis sentimen menggunakan ulasan pelanggan dari Google Play Store. Metode pembuatan model dimulai dari pengumpulan data, pelabelan data, pra proses data, ekstraksi fitur, model klasifikasi sentimen, evaluasi model, dan pemodelan topik. Peneliti menggunakan dua algoritma klasifikasi, Naive Bayes Classifier (NB) dan Support Vector Machine (SVM), pada total 10.507 ulasan. Data menunjukkan bahwa 74,37% ulasan mengungkapkan sentimen positif, sedangkan 25,63% mengungkapkan sentimen negatif. Hasil penelitian menunjukkan bahwa algoritma SVM dengan oversampling mencapai kinerja model terbaik, dengan recall sebesar 89,98%. Selain itu, peneliti menggunakan Latent Dirichlet Allocation (LDA) untuk mengidentifikasi topik terkait dengan perspektif pelanggan tentang Segari yang selanjutnya disampaikan kepada tim terkait. Hasil analisis mengungkapkan bahwa terdapat pelanggan yang puas dan kecewa dengan proses pengiriman produk. Pelanggan umumnya sudah puas dengan kualitas dan kesegaran dari produk. Beberapa pelanggan merasa kecewa karena pesanan yang kosong atau tidak lengkap dalam paket. Terdapat pelanggan yang puas dan kecewa terhadap aplikasi antarmuka pengguna, kecepatan, maupun kinerja aplikasi. Terdapat pelanggan yang puas dan kecewa terhadap harga, promo, dan voucher yang tersedia. Beberapa pelanggan merasa kecewa terhadap servis yang diberikan oleh customer service. Secara keseluruhan, penelitian ini memperluas pengetahuan tentang metode analisis sentimen dan memberikan wawasan tentang melakukan penelitian terkait analisis sentimen dan ulasan pelanggan.

The rapid development of information and communication technology demands innovation in application development to keep up with such rapid advancement. Segari is one of the popular online supermarket service providers in Indonesia. Segari is a customer-centric company with a core value of being obsessed with its customers, prioritizing their needs. The lack of human resources and the abundance of customer reviews that need to be analyzed hinder the process of extracting information from these reviews. Therefore, a machine learning model is needed to automatically perform sentiment analysis and classify the reviews into positive or negative sentiments. The information extracted from sentiment analysis can be used as a reference to maintain service quality based on positive sentiments, while the results of negative sentiments can be used for evaluation to improve Segari's services and application. In this research, the implementation of a sentiment analysis model using customer reviews from the Google Play Store is discussed. The model development process includes data collection, data labeling, data preprocessing, feature extraction, sentiment classification model, model evaluation, and topic modeling. The researcher utilized two classification algorithms, Naive Bayes Classifier (NB) and Support Vector Machine (SVM), on a total of 10,507 reviews. The data shows that 74.37% of the reviews express positive sentiments, while 25.63% express negative sentiments. The results of the study indicate that the SVM algorithm with oversampling achieved the best model performance, with a recall of 89.98%. Additionally, the researcher used Latent Dirichlet Allocation (LDA) to identify topics related to customer perspectives on Segari, which will be communicated to the relevant team. The analysis revealed that some customers are satisfied while others are disappointed with the product delivery process. Customers generally expressed satisfaction with the quality and freshness of the products. Some customers felt disappointed due to missing or incomplete items in their orders. There were mixed opinions about the user interface, speed, and performance of the application. Customers also expressed satisfaction and dissatisfaction with the available prices, promotions, and vouchers. Some customers felt disappointed with the service provided by the customer service team. Overall, this paper extends knowledge of sentiment analysis methods and provides insights on conducting research related to sentiment analysis and customer reviews.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Revan Dzaky Fahrezi
"Penelitian ini bertujuan untuk mengintegrasikan analisis sentimen dan teknik pengelompokan teks (text clustering) dalam mengevaluasi kualitas layanan berdasarkan model SERVQUAL, yang mencakup lima dimensi utama: Tangibility, Responsiveness, Reliability, Assurance, dan Empathy. Metode yang digunakan meliputi Naïve Bayes, Support Vector Machine, dan K-Nearest Neighbor untuk melakukan klasterisasi sentimen yang bervariasi di setiap dimensi SERVQUAL. Hasil analisis menunjukkan bahwa sentimen pelanggan berbeda di setiap dimensi, dengan beberapa area menonjol dalam sentimen negatif atau positif. Teknik clustering teks membantu mengidentifikasi tema-tema umum dan masalah yang sering dihadapi pelanggan. Kesimpulan dari penelitian ini adalah pendekatan analisis sentimen dan text clustering memberikan wawasan yang lebih detail dan mendalam mengenai kualitas layanan, yang memungkinkan perusahaan untuk mengambil tindakan yang lebih tepat dalam meningkatkan setiap dimensi SERVQUAL untuk meningkatkan kepuasan dan loyalitas pelanggan secara keseluruhan

This study aims to integrate sentimen analysis and text clustering techniques to evaluate service quality based on the SERVQUAL model, which includes five main dimensions: Tangibility, Responsiveness, Reliability, Assurance, and Empathy. The methods used include Naïve Bayes, Support Vector Machine, and K-Nearest Neighbor to perform sentimen clustering that varies across each SERVQUAL dimension. The analysis results show that customer sentimens differ across each dimension, with certain areas standing out in either negatif or positive sentimens. Text clustering techniques help identify common themes and issues frequently faced by customers. The conclusion of this study is that the sentimen analysis and text clustering approach provides more detailed and in-depth insights into service quality, enabling companies to take more precise actions in enhancing each SERVQUAL dimension to increase overall customer satisfaction and loyalty."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widya Amalia Dewi
"Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa sebab atas berkah rahmat dan karunia-Nya, penulis dapat menyelesaikan skripsi ini. Penulisan skripsi ini dilakukan dalam rangka memenuhi salah satu syarat untuk mendapatkan gelar Sarjana Teknik, Program Studi Teknik Komputer, Fakultas Teknik, Universitas Indonesia. Penulis menyadari skripsi ini tidak dapat diselesaikan tanpa bantuan dari Bapak F. Astha Ekadiyanto, S.T., M.Sc., selaku pembimbing skripsi yang telah menyediakan waktu, tenaga, dan pikiran selama penulis mengerjakan skripsi ini serta Bapak Ardiansyah, S.T., M.Eng. dan Ibu Prima Dewi Purnamasari, S.T., M.T., M.Sc. yang telah mengarahkan dan memberi saran dalam penulisan skripsi ini.
Perkembangan teknologi saat ini tidak hanya berisi informasi positif, informasi yang negatif pun mudah diperoleh melalui media internet. Untuk mengatasi dampak negatif yaitu gambar pornografi, salah satunya adalah pemfilteran gambar porno. Disini penulis mencoba menerapkan pengenalan pola untuk mengklasifikasi apakah gambar itu termasuk porno atau non porno. Proses klasifikasi konten gambar porno dilakukan melalui tiga tahapan utama. Pada tahap awal dilakukan pra-proses untuk memodifikasi resolusi data kualitas citra dilanjutkan dengan ekstraksi fitur menggunakan dekomposisi wavelet haar bertingkat tiga dan empat agar ukuran citra tidak terlalu besar.
Setelah itu dilakukan proses reduksi dimensi menggunakan Principal Component Analysis (PCA). PCA menentukan komponen penting dari citra dengan melihat dari varians yang direpresentasikan oleh nilai eigen, sehingga jumlah komponen yang akan dimasukkan ke proses pembelajaran tidak terlalu banyak, untuk menghindari curse of dimentionality. Baru setelah itu dilakukan proses klasifikasi. Pada penelitian ini telah dilakukan perbandingan algoritma SVM dengan BP untuk klasifikasi konten gambar porno. Untuk proses ekstraksi ciri digunakan metode wavelet pada masing-masing kedua metode tersebut. Pada penelitian ini digunakan 60 data uji, masing-masing 30 citra untuk kelas porno dan non porno. Tingkat akurasi yang diperoleh dengan menggunakan metode SVM lebih tinggi dibandingkan BP, yaitu 88,33% dan 86,67%."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63223
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mayang Nurul Aulia
"Performa akademik adalah bagian penting dari suatu sekolah. Saat ini, sebagian besar sekolah di Indonesia masih jarang melakukan klasifikasi performa akademik siswa, sehingga diperlukan metode yang tepat untuk mengklasifikasikan siswa berdasarkan perfroma akademiknya.  Pada peneltian ini digunakan metode Nave Bayes Classifier (NBC) dan metode Support Vector Machine (SVM) untuk mengklasifikasikan performa akademik siswa SMAN 38 Jakarta. Metode NBC menghasilkan tingkat akurasi tertinggi sebesar 96%, recall 100%, precision 92.68% dan %. Sedangkan metode SVM dengan kernel linier menghasilkan tingkat akurasi tertinggi sebesar 98%, recall 100%, precision 96.42% dan f1-score.

Academic performance is an important part of a school. At present, most schools in Indonesia rarely classify students’ academic performance, so we need the right method to classify students based on their academic performance. In this research, the Nave Bayes Classifier (NBC) and Support Vector Machine (SVM) methods are used to classify academic performance of SMAN 38 Jakarta students’. The NBC method produces the highest accuracy 96%, recall 100%, precision 92.68% and f1-score  While the SVM method produces the highest accuracy 98%, recall 100%, precision 96.42% and f1-score  on linear kernels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nafizatus Salmi
"ABSTRACT
Kanker telah dikenal sebagai penyakit yang terdiri dari beberapa jenis berbeda. Kanker adalah penyakit yang mengancam jiwa di dunia saat ini. Ada begitu banyak jenis kanker di dunia, salah satunya adalah kanker usus besar, di mana kanker ini adalah salah satu pembunuh nomor satu di dunia. Banyak pembelajaran mesin telah diterapkan dalam klasifikasi kanker. Penulis membandingkan model Naïve Bayes Classifier dan Support Vector Machine (SVM) dalam klasifikasi kanker usus besar. Naïve Bayes Classifier adalah teknik prediksi berbasis probabilitas sederhana berdasarkan pada penerapan teorema Bayes (atau aturan Bayes) dengan asumsi kemandirian yang kuat. Sedangkan konsep dasar metode SVM adalah membentuk bidang atau hyperplane optimal yang memisahkan data menjadi bidang-bidang yang memisahkan data ke dalam setiap kelas. Kedua metode menghasilkan akurasi tinggi hingga 95,24% untuk Naïve Bayes Classifier dan 94,05% untuk SVM dengan kernel linier.

ABSTRACT
Cancer has been known as a disease that consists of several different types. Cancer is a life-threatening disease in the world today. There are so many types of cancer in the world, one of which is colon cancer, where this cancer is one of the number one killers in the world. Much machine learning has been applied in the classification of cancer. The author compares the Naïve Bayes Classifier and Support Vector Machine (SVM) models in the classification of colon cancer. Naïve Bayes Classifier is a simple probability-based prediction technique based on the application of the Bayes theorem (or Bayes rule) with a strong assumption of independence. While the basic concept of the SVM method is to form an optimal plane or hyperplane that separates data into fields that separate data into each class. Both methods produce high accuracy up to 95.24% for Naïve Bayes Classifier and 94.05% for SVM with linear kernels."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>