Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 147446 dokumen yang sesuai dengan query
cover
Muhammad Fadel Akbar Putra
"Kasus illegal fishing yang marak di Indonesia menyebabkan kerugian besar bagi industri perikanan. Selain itu, proses klasifikasi jenis ikan dan penentuan beratnya memakan waktu yang lama. Penelitian ini mengembangkan sistem prediksi jenis ikan dan beratnya untuk meningkatkan efisiensi hasil tangkapan. Model object detection dan segmentation menggunakan arsitektur YOLOv8 (You Only Look Once), sementara prediksi berat ikan dilakukan dengan decision tree, random forest, XGBoost, dan ANN. Ada 5 metode eksperimen yang dilakukan untuk mendapatkan model object detection dan instance segmentation terbaik, yaitu yang pertama membandingkan arsitektur small, medium, dan large dari model YOLOv8 untuk mengetahui arsitektur terbaik terhadap kemampuan mendeteksi dan mengsegmentasi objek, yang kedua melakukan tunning hyperparameter dari model terbaik di eksperimen 1 dengan mengubah variasi optimuzer serta dropout, yang ketiga membandingkan algoritma decision tree, random forest, dan XGBoost untuk mengetahui algoritma regresi terbaik untuk melakukan prediksi berat ikan, yang keempat adalah melakukan evaluasi dengan dataset tanpa dan dengan cumi untuk mengetahui pengaruh kelas cumi dalam kemampuan prediksi model, dan yang terakhir adalah melakukan hyperparameter tunning terhadap model terbaik dari eksperimen tiga, yaitu random forest dan ANN. Dari kelima eksperimen yang dilakukan didapatkan hasil model object detection dan instance segmentation terbaik menggunakan YOLOv8seg-m (medium) dengan optimizer SGD dan tanpa dropout mencapai metrics mAP0.5 sebesar 0.994, mAP0.5:0.95 sebesar 0.886, F1-score sebesar 0.985, IoU (mask) sebesar 0.828, dan IoU (box) sebesar 0.846. Model prediksi berat terbaik adalah random forest dengan R2 sebesar 0.994, MAE sebesar 6.051, MSE sebesar 124.058, dan RMSE sebesar 11.138. Kata kunci: fish monitoring, computer vision, deep learning, object detection, instance segmentation, YOLOv8.

The widespread occurrence of illegal fishing in Indonesia has caused significant losses to the fishing industry. Additionally, the process of classifying fish species and determining their weight is time-consuming. This study develops a system to predict fish species and weight to improve the efficiency of catch results. The object detection and segmentation model uses the YOLOv8 (You Only Look Once) architecture, while fish weight prediction is performed using decision tree, random forest, XGBoost, and ANN. Five experimental methods were conducted to obtain the best object detection and instance segmentation model: the first compared the small, medium, and large architectures of the YOLOv8 model to determine the best architecture for object detection and segmentation capabilities; the second tuned the hyperparameters of the best model from experiment 1 by varying the optimizer and dropout; the third compared decision tree, random forest, and XGBoost algorithms to determine the best regression algorithm for fish weight prediction; the fourth evaluated the dataset with and without squid to understand the influence of the squid class on the model's prediction ability; and the last performed hyperparameter tuning on the best models from experiment three, namely random forest and ANN. From the five experiments conducted, the best object detection and instance segmentation model was found using YOLOv8seg-m (medium) with the SGD optimizer and no dropout, achieving metrics of mAP0.5 of 0.994, mAP0.5:0.95 of 0.886, F1-score of 0.985, IoU (mask) of 0.828, and IoU (box) of 0.846. The best weight prediction model was random forest with an R2 of 0.994, MAE of 6.051, MSE of 124.058, and RMSE of 11.138."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aidan Azkafaro Deson
"Di dalam olahraga tenis, pemahaman yang mendalam tentang gerakan lawan sangat penting untuk merespons pukulan dengan efektif. Salah satu tantangan utama yang dihadapi pemain adalah mengantisipasi arah pukulan lawan dengan cepat dan akurat. Faktor utama yang memengaruhi arah pukulan bola tenis adalah sudut kontak bola dengan raket saat memukulnya. Namun, dalam kecepatan permainan yang tinggi, observasi terhadap faktor ini sulit dilakukan. Faktor lain yang dapat memengaruhi arah pukulan adalah pose pemain saat memukul bola. Penelitian ini bertujuan untuk mengevaluasi penerapan machine learning dalam mengatasi masalah ini, dengan menggunakan informasi sekuensial mengenai pergerakan pose pemain sesaat sebelum memukul bola dan meneruskannya ke jaringan neural network untuk klasifikasi arah pukulannya menjadi tiga jenis kelas, yaitu Cross Left, Cross Right, dan Straight. Dataset yang digunakan untuk penelitian ini diambil dari beberapa video pertandingan tenis profesional dari platform YouTube dengan total durasi permainan efektif 43 menit. Untuk mendapatkan informasi mengenai koordinat pose pemain, digunakan YOLOv8-Pose, sementara TrackNet digunakan untuk mendeteksi koordinat bola dan lapangan. Arah pukulan bola ditentukan dari informasi koordinat bola sebelum dan setelah pemain melakukan pukulan. Informasi pose pemain sebanyak 20 frame sebelum pemain memukul bola disimpan dalam suatu array tiga dimensi dan digunakan sebagai input untuk jaringan neural network. Penelitian ini menguji dua jenis neural network, yaitu RNN dan LSTM, dan dilakukan tuning hingga diperoleh performa terbaik pada kedua model tersebut. Model RNN mencapai akurasi sebesar 74%, sedangkan model LSTM mencapai akurasi sebesar 79%. Untuk meningkatkan performa model, diterapkan class weighting agar model memberikan perhatian yang lebih adil terhadap setiap kelas. Hasilnya, akurasi model RNN meningkat menjadi 80% dan akurasi model LSTM meningkat menjadi 82%.

In the sport of tennis, a deep understanding of the opponent's movements is crucial for effectively responding to their shots. One of the main challenges players face is anticipating the direction of their opponent's shots quickly and accurately. The primary factor influencing the direction of a tennis ball's shot is the angle at which the ball contacts the racket. However, observing this factor is difficult in the high-speed context of the game. Another factor that can influence the shot's direction is the player's pose at the moment of impact. This study aims to evaluate the application of machine learning in addressing this issue by using sequential information about the player's pose movements just before hitting the ball and feeding it into a neural network for shot direction classification into three categories: Cross Left, Cross Right, and Straight. The dataset used for this study was obtained from several professional tennis match videos on YouTube, with a total effective gameplay duration of 43 minutes. To obtain information about the player's pose coordinates, YOLOv8-Pose was used, while TrackNet was used to detect the coordinates of the ball and the court. The shot direction was determined from the ball's coordinates before and after the player made contact. The player's pose information, consisting of 20 frames before hitting the ball, was stored in a three-dimensional array and used as input for the neural network. This study tested two types of neural networks, RNN and LSTM, and tuning was performed to obtain the best-performing models for both. The RNN model achieved an accuracy of 74%, while the LSTM model achieved an accuracy of 79%. To improve model performance, class weighting was applied to ensure the model gave fair attention to each class. As a result, the accuracy of the RNN model increased to 80%, and the accuracy of the LSTM model increased to 82%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karenina Kamila
"Sektor perikanan Indonesia merupakan salah satu sektor penting bagi kemajuan perekonomian Indonesia dikarenakan Indonesia yang memiliki luas laut yang sangat besar dan SDA ikan yang berlimpah. Namun, sampai saat ini perdagangan ikan ilegal masih sering terjadi di kalangan nelayan yang biasanya dilakukan di atas kapal walaupun sudah ada petugas pengawas. Untuk mengatasi masalah ini perlu adanya sistem pengawasan dengan menggunakan kamera CCTV dan artificial intelligence di atas kapal dengan harapan dapat mengurangi resiko kecurangan petugas setempat dan meningkatkan efektivitas pengawasan penangkapan ikan. Penelitian ini berfokus untuk mencari model dengan menyesuaikan beberapa hyperparameter untuk mendapatkan hasil yang terbaik dengan menggunakan algoritma YOLOv6 untuk object detection dan YOLOv8 untuk segmentation. Penelitian ini mendapatkan model terbaik untuk object detection menggunakan YOLOv6 dengan nilai mAP @0,5 sebesar 0,833, mAP @0,5-0,95 sebesar 0,63, F1-score sebesar 0,861 dan FPS 92 dan segmentation menggunakan YOLOv8 menghasilkan nilai mAP mask @0,5 sebesar 0,804, mAP mask @0,5-0,95 sebesar 0,426, mAP box @0,5 sebesar 0,843, dan mAP box @0,5-0,95 sebesar 0,561. Kedua versi YOLO tersebut dapat mengklasifikasi jenis ikan yang ditangkap oleh nelayan dengan harapan dapat mempermudah proses pencatatan dan penyimpanan data hasil penangkapan ikan.

The Indonesian fisheries sector is one of the important sectors for the progress of the Indonesian economy because Indonesia has a very large sea area and abundant fish resources. However, until now illegal fish trade is still common among fishermen, which is usually carried out on boats even though there are supervisors. To overcome this problem, it is necessary to have a surveillance system using CCTV cameras and artificial intelligence on board so that it will reduce the risk of fraud by local officers and increase the effectiveness of fishing supervision. This research focuses on finding a model by adjusting several hyperparameters to get the best results using the YOLOv6 algorithm for object detection and YOLOv8 for segmentation. This study found the best model for object detection using YOLOv6 with a mAP @0.5 value of 0.833, mAP @0.5-0.95 of 0.63, F1-score of 0.861 and FPS 92 and segmentation using YOLOv8 produces a mAP mask value @0.5 is 0.804, mAP mask @0.5-0.95 is 0.426, mAP box @0.5 is 0.843, and mAP box @0.5-0.95 is 0.561. The two YOLO versions can classify the types of fish caught by fishermen in the hope of facilitating the process of recording and storing data on fishing results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Daffa Ajiputra
"Indonesia merupakan salah satu negara pengekspor ikan terbesar di dunia yang membuat sektor perikanan Indonesia memiliki banyak ancaman. Illegal, unreported, unregulated (IUU) fishing adalah salah satu permasalahan yang memiliki dampak yang cukup signifikan karena membuat kerugian yang cukup besar di sektor perikanan Indonesia. Untuk mencegah permasalahan tersebut, sudah banyak solusi yang diajukan, salah satunya adalah penerapan teknologi seperti kamera pengawas, tetapi solusi tersebut belum memiliki dampak yang signifikan dalam mengurangi dan menghilangkan IUU fishing. Oleh karena itu, penelitian ini dilakukan untuk mengembangkan sistem deteksi multi objek untuk pendeteksian jenis ikan berbasis YOLOv7, sebuah model kecerdasan buatan yang dapat melakukan pendeteksian jenis ikan untuk melakukan pengawasan terhadap jumlah ikan yang ditangkap oleh nelayan sehingga IUU fishing dapat berkurang secara signifikan. Dari pengujian yang dilakukan, model YOLOv7 menjadi varian model YOLOv7 terbaik yang dapat digunakan untuk melakukan pendeteksian jenis ikan dengan nilai mAP yang dapat mencapai 86,1% dan inference time hingga 14,5 ms sehingga menghasilkan jumlah FPS yang dapat mencapai 69 FPS. Nilai tersebut berhasil didapatkan dengan menggunakan bentuk data polygon annotation, metode object detection, ukuran citra 800 piksel, dan jumlah epochs sebesar 1000 dengan patience 50. Namun, model YOLOv7 memiliki inference time yang sangat lambat hingga 797.6 ms ketika dipasang pada Jetson Nano meskipun akurasi pendeteksian memiliki hasil yang sama.

Indonesia is one of the world's largest exporters of fish, which exposes Indonesia's fishing sector to many threats. Illegal, unreported, unregulated (IUU) fishing is one of the problems that resulted in a significant impact in a form of a big loss that is created for the Indonesian fisheries sector. To prevent that problem, there are a lot of solutions that have been proposed, one of which is the application of technology such as surveillance cameras, but it still doesn't have a big impact to reduce and eliminate IUU fishing. Therefore, this research is conducted to develop a multi-object detection system for the detection of fish species based on YOLOv7, an artificial intelligence model that can detect a fish to supervise the number of fish that is caught by the fisherman so IUU fishing can reduce significantly. From the testing, the YOLOv7 model becomes the best YOLOv7 model variant that can be used to detect a fish with the value of mAP that can reach up to 86.1% and the value of inference time up to 14.5 ms that can produce an FPS total up to 69 FPS. The value can be achieved by doing some modifications in data annotation, the training model method, image size, and iteration on training. However, the YOLOv7 model has a very slow inference time up to 797.6 ms when it’s installed in Jetson Nano even though the detection accuracy has the same value."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zufar Ashshiddiqqi
"Indonesia merupakan negara maritim terbesar di dunia dengan banyak sekali ikan yang hidup di perairan Indonesia Hal ini membuat sektor perikanan Indonesia memiliki banyak ancaman. Illegal, unreported, unregulated (IUU) fishing adalah salah satu permasalahan yang memiliki dampak yang cukup signifikan karena membuat kerugian yang cukup besar di sektor perikanan Indonesia. Untuk mencegah permasalahan tersebut, sudah banyak solusi yang diajukan, salah satunya adalah penerapan kuota untuk operasi penangkapan ikan serta pemasangan kamera pengawas, namun solusi tersebut belum memiliki dampak yang signifikan dalam mengurangi dan mencegah terjadinya IUU fishing. Oleh karena itu, penelitian ini dilakukan untuk mengembangkan sistem deteksi jenis ikan hasil tangkapan. Sistem dirancang menggunakan konsep object detection dan instance segmentation yang merupakan sebuah bidang dari machine learning, menggunakan toolbox MMDetection dengan algoritma Faster R-CNN dan GFL untuk metode object detection dan algoritma Mask R-CNN untuk metode instance segmentation. Dimana sistem tersebut merupakan model kecerdasan buatan yang dapat melakukan pendeteksian ikan untuk melakukan pengawasan terhadap jumlah ikan yang ditangkap oleh nelayan sehingga IUU fishing dapat berkurang secara signifikan. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP @50 0,758, besar F1-Score 0,761, dan membutuhkan waktu untuk pelatihan selama 7 jam 32 menit. Selain itu, model tersebut juga mendapatkan akurasi yang lebih baik sebanyak 20% dari perbandingan dengan model object detection.

Indonesia, as the world's largest maritime country, is home to a vast variety of fish species in its waters. This reality poses numerous threats to Indonesia's fisheries sector. One significant challenge is illegal, unreported, and unregulated (IUU) fishing, which has considerable detrimental effects and causes substantial losses to the Indonesian fisheries industry. Several solutions have been proposed to address this problem, including the implementation of fishing quotas and the installation of surveillance cameras. However, these solutions have not yielded significant impacts in reducing and preventing IUU fishing. Hence, this research aims to develop a fish species detection system. The system is designed based on the concepts of object detection and instance segmentation, which are subfields of machine learning. The research utilizes the MMDetection toolbox with the Faster R-CNN and GFL algorithms for object detection, as well as the Mask R-CNN algorithm for instance segmentation. This artificial intelligence-based system enables the detection of captured fish to monitor the quantity of fish caught by fishermen, thereby significantly reducing IUU fishing. The research's best-performing system employs the instance segmentation model, achieving an mAP@50 score of 0.758, an F1-Score of 0.761, and requires a training time of 7 hours and 32 minutes. Moreover, this model also demonstrates a 20% improvement in accuracy compared to the object detection model."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panggabean, Timothy Christian
"

Salah satu permasalahan utama yang sedang dihadapi oleh Kementrian Kelautan dan Perikanan Republik Indonesia (KKP) adalah maraknya kejadian Illegal, Unreported, and Unregulated (IUU) fishing yang terjadi pada perairan Indonesia. Kejadian ini menimbulkan banyak kerugian bagi Indonesia, terutama dalam aspek sosial, ekologi, dan ekonomi. Untuk mengatasi masalah ini, terutama unreported fishing, dirancanglah sebuah sistem yang dapat digunakan untuk memonitor penangkapan ikan, sekaligus melakukan deteksi dan klasifikasi terhadap jenis ikan hasil tangkapan di atas kapal. Sistem dirancang menggunakan konsep object detection dan instance segmentation, dua bidang dari machine learning, menggunakan model YOLOv5 dan varian-variannya yang merupakan salah satu model dari keluarga YOLO (You Only Look Once) yang paling baik dari segi kecepatan dan akurasi. Dengan adanya sistem tersebut, diharapkan bahwa hasil tangkapan kapal di perairan Indonesia dapat bersifat lebih legal, teratur, dan sesuai dengan yang dilaporkan kepada KKP. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP50 0,834, mAP50-95 0,544, F1-score 0,848, dan kecepatan inferensi 232,6 fps untuk partisi validation, dan mAP50 0,797, mAP50-95 0,531, F1-score 0,802, dan kecepatan inferensi 250,0 fps untuk partisi testing pada hasil bounding box, serta nilai mAP50 0,739, mAP50-95 0,36, F1-score 0,789, dan kecepatan inferensi 232,6 fps untuk partisi validation, dan mAP50 0,711, mAP50-95 0,335, F1-score 0,746, dan kecepatan inferensi 250,0 fps untuk partisi testing pada hasil segmentation mask. Selain itu, model tersebut juga mendapatkan akurasi 60% pada tahapan perbandingan dengan model object detection.


One of the main problems the Indonesian Ministry of Marine Affairs and Fisheries (KKP) is currently facing is the abundance of Illegal, Unreported, and Unregulated (IUU) fishing instances happening in Indonesian waters. This phenomenon creates a lot of problems for Indonesia, mainly in the social, ecological, and economical aspects. To overcome these problems, mainly unreported fishing, a system that can be used to not only monitor the fishing process, but also to detect and classify the types of fish that are caught by that boat was created. This system is based on object detection and instance segmentation, both fields of machine learning, using the YOLOv5 model and its variants, which are some of the fastest and most accurate models from the YOLO (You Only Look Once) family. With this system, it is hoped that fish caught in Indonesian waters can be more legitimate, regulated, and reported correctly to the KKP. The best system from this research is created using an instance segmentation model with mAP50 0.834, mAP50-95 0.544, F1-score 0.848, and inference speed 232.6 fps for validation scores, and mAP50 0.797, mAP50- 95 0.531, F1-score 0.802, and inference speed 250.0 fps for testing scores on the bounding box results, as well as mAP50 0.739, mAP50-95 0.36, F1-score 0.789, and inference speed 232.6 fps for validation scores, and mAP50 0.711, mAP50-95 0.335, F1-score 0.746, and inference speed 250.0 fps on the segmentation mask results. The model also achieved an accuracy of 60% in the comparison phase against the object detection model.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaky Nuryasin
"Kecerdasan buatan (artificial intelligence, AI) merupakan teknologi yang sedang berkembang dengan cepat pada masa ini. Adanya teknologi AI membuat banyak permasalahan sederhana dan kompleks dapat diatasi dengan program komputer. Salah satu penerapan dari teknologi AI yang memiliki perkembangan yang besar adalah pada computer vision, yang mana dapat dibuat program yang dapat mendeteksi dan mengklasifikasi objek pada suatu gambar. Pada bidang ini, computer vision dapat digunakan untuk mendeteksi rokok. Algoritma dapat dibuat untuk mengetahui jika ada objek rokok dan lokasi dari rokok tersebut pada gambar. Hal ini dapat berguna untuk menyensor rokok pada media video yang dikonsumsi oleh anak-anak. Pada media video, biasanya sensor dilakukan dengan cara manual dan dengan bantuan tracking. Cara ini dapat melelahkan karena walaupun dengan tracking, harus ada orang sebagai pendeteksi yang menunjukkan lokasi objek rokok secara berkala. Terdapat banyak arsitektur dan model algoritma untuk deteksi objek, salah satunya adalah YOLOv8 (You Only Look Once version 8). YOLOv8 adalah versi terbaru dari algoritma YOLO, yang mana merupakan salah satu algoritma state-of-the-art dalam deteksi objek. YOLO merupakan model dari Convolutional Neural Network (CNN) yang melakukan deteksi dengan konsep single stage detector, yaitu algoritma ini melakukan deteksi objek dengan menggunakan keseluruhan gambar sekaligus untuk menjadi masukan input neural network-nya. Cara ini membuat YOLO memiliki tingkat kecepatan yang tinggi mendekati real-time. Selain deteksi objek, diterapkan juga algoritma tracking yang berfungsi untuk menandai pergerakan objek rokok pada video. Sehingga objek rokok akan tetap disensor walaupun terjadi perubahan cahaya, terhalang objek lain, dan gangguan visual lainnya pada video. Algoritma tracking yang digunakan pada penelitian ini adalah ByteTrack. ByteTrack adalah algoritma tracking yang menggunakan komputasi yang minim karena dapat melakukan tracking dengan hanya memproses lokasi bounding box tiap frame video. Perbedaan algoritma ini dibandingkan yang lain adalah ByteTrack akan memanfaatkan semua hasil deteksi objek walaupun terdapat nilai confidence yang kecil. Pada penelitian ini didapatkan model training terbaik dari YOLOv8 dengan nilai presisi sebesar 86,5%, nilai recall sebesar 86,1%, nilai mAP 50 sebesar 88,1%, dan nilai mAP 50:95 sebesar 58,3%. Lalu pada konfigurasi confidence ByteTrack didapatkan hasil terbaik dengan pada confidence tahap pertama sebesar 0,247 dan tahap kedua sebesar 0,01. Hasil tracking ini mendapatkan nilai presisi sebesar 62,3%, nilai recall sebesar 62,7%, nilai akurasi sebesar 45,5%, dan nilai F1 sebesar 62,5%.

Artificial intelligence (AI) is a technology that is developing rapidly and popular in this era. AI technology creates the possibility to solve and overcome many simple complex problems. One example of the application of AI technology that has great development is computer vision, which is a concept that can make a computer program to detect and classify objects in an image.  Using computer vision, this technology can be used to detect cigarette. From image or video media, the algorithm can check if there is any cigarette and then locate the object in the image. This is useful to censor cigarette from media that consumed by children. On video medium, censorship usually done manually with the help of object tracking. This method can be tiring because even if object tracking is used, there must be a person as a detector that locate the cigarette every few frames. There are many architectures and models for object detection, YOLOv8 (You Only Look Once version 8) is one of them. YOLOv8 is the latest version of YOLO algorithm. YOLOv8 is considered as one of the state-of-the-art algorithm for object detection.  YOLO model is based from Convolutional Neural Network (CNN). The concept of this algorithm to detect object is called single stage detector, which means that it takes the whole image as input for its neural network thus only single image process needed. This concept makes YOLO fast to detect objects. Object tracking algorithm is also used to keep track detected cigarette even if there is a change in light, occlusion from other object, and other visual changes in the video. ByteTrack is used for the tracking algorithm in this study. ByteTrack works by processing bounding box location of each frame in video, making it use little computation. The main difference of this algorithm is that it process all bounding boxes from the object detection, including detected object with low confidence score. In this study, the YOLOv8 model managed to obtain the best performance with precision value of 86.5%, recall value of 86.1%, mAP 50 value of 88.1%, and mAp 50:95 value of 58.3%. For the confidence configuration of ByteTrack, best performance is achieved with 0.247 confidence score for the first association and 0.01 confidence score for the second association. The result of this configuration is a precision value of 62.5%, a recall value of 62.7%, an accuracy value of 45.5%, and a F1 score of 62.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasnan Fiqih
"Hampir separuh dunia bergantung pada makanan yang berasal dari laut sebagai sumber protein utama. Di Pasifik Barat dan Tengah 60% dari ikan tuna ditangkap secara illegal, tidak dilaporkan, dan tidak diatur dengan regulasi dapat mengancam ekosistem laut, pasokan ikan global, dan mata pencaharian lokal. Salah satu solusi yang dapat dilakukan adalah dengan menggunakan kamera keamanan untuk menangkap gambar aktivitas kapal. Pada penelitian ini akan dibuat sistem untuk mengklasifikasi jenis ikan yang ditangkap dari gambar kamera keamanan kapal tersebut. Sistem ini menggunakan model transfer learning yang sudah dilakukan fine tuning dan dilatih menggunakan dataset yang disediakan oleh The Nature Conservancy. Dari penelitian ini didapatkan performa terbaik dengan akurasi 98.19% menggunakan model EfficientNetV2L dan optimizer Stochastic Gradient Descent (SGD) dengan learning rate 1e-4, momentum 0.9, weight decay 1e-6, dan split ratio training testing 80/20. Dengan sistem ini pengolahan data untuk menghitung jumlah penangkapan ikan berdasarkan spesies akan lebih efisien.

Almost half of the world depends on food that comes from the sea as the main source of protein. In the West and Central Pacific 60% of tuna fish are caught illegally, unreported and unregulated, threatening marine ecosystems, global fish supplies and local livelihoods. One possible solution is to use a security camera to capture images of ship activity. In this study a system will be created to classify the types of fish caught from the ship's security camera images. This system uses a transfer learning model that has been fine tuned and trained using the dataset provided by The Nature Conservancy. From this study, the best performance was obtained with an accuracy of 98.19% using the EfficientNetV2L model and the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 1e-4, momentum of 0.9, weight decay of 1e-6, and split ratio training testing of 80/20. With this system, data processing to calculate the amount of fish caught by species will be more efficient.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aidan Daffa Junaidi
"Terumbu karang merupakan organisme laut yang memberikan keuntungan untuk banyak mahluk hidup lainnya. Semakin parahnya polusi pada air dan perubahan iklim yang tidak menentu menyebabkan kesehatan terumbu karang terancam. Proyeksi untuk tahun 2050 menunjukkan bahwa 95% terumbu karang kemungkinan akan mengalami pemutihan. Penelitian ini mengusulkan untuk menerapkan deep learning untuk mengklasifikasikan tipe dan level kesehatan terumbu karang yang klasifikasinya dibagi berdasarkan bagan kesehatan CoralWatch, yaitu dibagi menjadi level 1 – 6. Klasifikasi kesehatan terumbu karang pada penelitian ini dibagi menjadi 6 label, yaitu lv.6, lv.5, lv.4, lv.3, lv.2, dan lv.1. Sedangkan untuk klasifikasi tipe terumbu karang terdapat 3 kelas, yaitu Boulder, Table, dan Branching. Hasil akhir penelitian ini adalah model untuk klasifikasi tipe dan level kesehatan terumbu karang. Bahasa pemograman yang digunakan adalah python, dan arsitektur yang digunakan adalah ResNet, MobileNetV2, DenseNet, dan VGG19. Pada penelitian ini didapat akurasi terbaik sebesar 100% untuk klasifikasi tipe terumbu karang dengan arsitektur DenseNet dan untuk klasifikasi kesehatan terumbu karang didapat akurasi sebesar 55% dengan arsitektur DenseNet.

Coral reefs are marine organisms that provide benefits to many other living creatures. The worsening pollution in the water and unpredictable climate changes threaten the health of coral reefs. Projections for 2050 indicate that 95% of coral reefs are likely to experience bleaching. This research proposes to apply deep learning to classify the types and health levels of coral reefs, with classifications divided based on the CoralWatch health chart, ranging from level 1 to 6. The health classification of coral reefs in this study is divided into 6 labels: lv.6, lv.5, lv.4, lv.3, lv.2, and lv.1. Meanwhile, for the classification of coral reef types, there are 3 classes: Boulder, Table, and Branching. The final outcome of this research is a model for classifying the types and health levels of coral reefs. The programming language used is Python, and the architectures used are ResNet, MobileNetV2, DenseNet, and VGG19. In this study, the best accuracy obtained for the classification of coral reef types is 100% with the DenseNet architecture, while for the classification of coral reef health, the accuracy obtained is 55% with the DenseNet architecture."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Watulingas, Benedicto Matthew
"Indonesia, sebagai salah satu negara pengekspor ikan terbesar di dunia, menghadapi tantangan serius dalam sektor perikanan akibat illegal, unreported, unregulated (IUU) fishing. Meskipun telah ada pengawas yang ditugaskan, namun praktik ini masih ditemukan, sehingga perlu teknologi pengawasan di atas kapal. Telah dikembangkan model yang dapat mengklasifikasikan jenis ikan di kapal melalui video CCTV namun masih perlu dilengkapi dengan kemampuan memprediksi berat ikan. Dengan metode ensemble learning yang dipilih karena memiliki kinerja yang lebih baik dibanding model individual, penelitian ini bertujuan untuk membangun model prediksi berat melalui citra dari sistem CCTV. Kemampuan untuk memprediksi berat ikan akan memberikan metode bagi pemerintah untuk melakukan pengecekan apakah hasil tangkapan yang dilaporkan sesuai dengan tangkapan yang terjadi di lapangan. Dari pengujian yang dilakukan, algoritma Catboost Regression menunjukkan kinerja terbaik di antara semua model yang diuji. Pada dataset gabungan, dengan rasio data split 90:10, CatBoost mencapai  score 0.986, MAE 9.794, MSE 293.493, dan RMSE 17.132. Untuk dataset cumi dengan rasio 90:10, nilai metrik yang diperoleh adalah  0.025, MAE 18.451, MSE 660.629, dan RMSE 25.702. Sementara pada dataset ikan dengan rasio 90:10, CatBoost menunjukkan kinerja sangat baik dengan  0.980, MAE 5.825, MSE 146.713, dan RMSE 10.129. Model yang dipilih dengan kinerja yang paling baik adalah model dengan dataset ikan dengan MAE 5.825, yang berarti nilai error dari rata-rata berat ikan yang ditimbang adalah 1.29%. Hasil ini menunjukkan bahwa Catboost Regression mampu memprediksi berat ikan dengan akurasi yang tinggi dibandingkan model regresi lainnya pada dataset yang digunakan, dengan pemilihan rasio data split yang optimal.

Indonesia, as one of the largest fish-exporting countries in the world, faces serious challenges in its fisheries sector due to illegal, unreported, and unregulated (IUU) fishing. Despite having monitoring officers assigned, these practices are still found, necessitating the use of surveillance technology on vessels. A model has been developed that can classify fish species on ships using CCTV footage, but it still needs to be enhanced with the ability to predict the weight of the fish. Ensemble learning methods, chosen for their superior performance compared to individual models, are being used in this research to build a weight prediction model using images from the CCTV system. The ability to predict fish weight will provide the government with a method to verify whether the reported catches match what is caught at sea. From the tests conducted, the Catboost Regression algorithm demonstrated the best performance among all tested models. On the combined dataset with a 90:10 train-test split ratio, CatBoost achieved an  score of 0.986, MAE of 9.794, MSE of 293.493, and RMSE of 17.132. For the squid dataset with a 90:10 ratio, the metrics obtained were an  of 0.025, MAE of 18.451, MSE of 660.629, and RMSE of 25.702. Meanwhile, for the fish dataset with the same ratio, CatBoost showed excellent performance with an  of 0.980, MAE of 5.825, MSE of 146.713, and RMSE of 10.129. The best-performing model is the one with the fish dataset, achieving an MAE of 5.825, which translates to an error rate of 1.29% in the average weight of the fish weighed. These results indicate that Catboost Regression can predict fish weight with high accuracy compared to other regression models used on the dataset, with optimal data split ratio."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>