Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 176510 dokumen yang sesuai dengan query
cover
Agus Setiawan
"Skema load shifting merupakan strategi krusial dalam upaya menekan biaya pokok penyediaan (BPP) dalam sistem pembangkitan energi. Penelitian ini mengeksplorasi dua pendekatan utama dalam pelaksanaan load shifting: yang pertama, secara aktif melalui pemanfaatan Battery Energy Storage System (BESS), dan yang kedua, secara partisipatif dengan menerapkan tarif dinamis. Fokusnya adalah pada simulasi kedua skema ini dalam jangka waktu mendatang, khususnya mengantisipasi penetrasi masif PLTS dalam lima tahun ke depan di wilayah Sistem Jawa-Madura-Bali. Hasil analisis menunjukkan bahwa baik implementasi BESS maupun penerapan tarif dinamis Time of Use (TOU) efektif dalam meningkatkan efisiensi pembangkitan listrik. Studi ini juga mengidentifikasi karakteristik unik dalam simulasi tarif dinamis TOU untuk berbagai jenis pelanggan, termasuk rumah tangga, industri, dan komersial. Penelitian ini memberikan metodologi yang praktis dan relevan bagi sistem besar di seluruh dunia, dengan studi kasus pada Sistem Jawa-Madura-Bali yang menyoroti hasil terbaik pada skenario 10.5% load shifting untuk pelanggan rumah tangga.

The load-shifting scheme plays a pivotal role in reducing the cost of electricity provision in power generation systems. This study explores two main approaches to implementing load shifting: firstly, actively through the utilization of Battery Energy Storage System (BESS), and secondly, participatively by applying dynamic tariff schemes. The focus lies on simulating both schemes in future time horizons, particularly anticipating the massive penetration of Photovoltaic Solar (PLTS) within the next five years in the Java-Madura-Bali System. The analysis results demonstrate the effectiveness of both BESS implementation and the Time of Use (TOU) dynamic tariff scheme in enhancing electricity generation efficiency. The study also identifies unique characteristics in the simulation of TOU dynamic tariffs for various types of consumers, including households, industries, and commercial entities. This research provides a practical and relevant methodology for large-scale systems worldwide, with a case study on the Java-Madura-Bali System highlighting household consumers' best outcomes in the 10.5% load-shifting scenario."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Agus Setiawan
"Tarif dinamis saat ini telah menjadi tren di negara-negara maju khususnya di bidang ketenagalistrikan. Tarif tetap (flat tariff) pada konsumen listrik menyebabkan kurang optimalnya biaya penyediaan listrik. Di Indonesia kelompok konsumen tertinggi kedua setelah industri adalah rumah tangga yaitu sebesar 37,6 % dari konsumsi total energi listrik. Sehingga secara alamiah kurva beban cenderung mendekati kurva kebutuhan rumah tangga. Pada sistem Jawa Madura Bali, beban puncak pelanggan rumah tangga terjadi pada saat yang sama dengan beban puncak pada sistem. Sehingga jika terjadi load shifting pada beban rumah tangga akan mempunyai dampak yang besar bagi sistem. Beban puncak dipikul oleh pembangkit dengan biaya operasional yang mahal. Dengan adanya pengurangan beban puncak diharapkan terjadi efisiensi sistem yang signifikan. Tesis ini mengembangan metode penentuan skema kombinasi tarif dinamis TOU (Time Of Use) dan CPP (Critical Peak Pricing) dengan berdasarkan revenue neutrality. Skema tersebut disimulasikan pada pelanggan rumah tangga di sistem Jawa Madura Bali. Dari beberapa skenario, hasil penerapan skema ini menunjukkan peningkatan efisiensi biaya pokok penyediaan listrik secara total di sistem Jawa Madura Bali.

The current dynamic tariff has become a trend in developed countries, especially in the electricity sector. Flat tariffs on electricity consumers cause the cost of electricity to be less optimal. In Indonesia, the second highest consumer group after industry is household, which is 37,6 % of total electricity consumption. So naturally the load curve tends to approach the curve of household needs. In the Java Madura Bali system, the peak load of a household customer occurs at the same time as the peak load on the system. If any load shifting of the electricity consumption of the household is happen it will have a big impact on the system. The peak load is borne by the power plant with expensive operational costs. With the reduction of peak load, significant system efficiency is expected. This thesis develope a method of determination of a dynamic tariff combination scheme, TOU (Time Of Use) and CPP (Critical Peak Pricing) with revenue neutrality. The scheme is simulated to household customers in the Java Bali Madura system. From several scenarios, the results of the implementation of this scheme show increasing of the total cost efficiency of electricity supply in the Java Madura Bali system."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52632
UI - Tesis Membership  Universitas Indonesia Library
cover
Vhania Maulia
"Ketidakadilan dalam menyediakan tarif listrik dengan metode tarif flat listrik saat ini mendorong keinginan untuk mengubah pola desain skenario tarif, yaitu penetapan harga dinamis. Harga dinamis telah diuji di beberapa negara barat dengan berbagai jenis skenario. Namun, untuk Indonesia sendiri, penetapan harga dinamis belum familiar di sektor listrik. Berangkat dari masalah tarif untuk penyediaan biaya dasar pembangkit yang bervariasi setiap waktu dan pola penggunaan beban listrik, skenario penetapan harga dinamis dirancang sedemikian rupa sehingga sesuai dengan karakteristik di Indonesia.
Dalam studi ini, kita akan membahas rancangan skenario penetapan harga dinamis berdasarkan beban rumah tangga dan generator di Java Madura Bali System. Desain skenario tarif yang digunakan adalah kombinasi dari Critical Peak Pricing (CPP) dan Time-of-Use (TOU), di mana CPP hanya berlaku dalam 132 jam selama satu tahun tergantung pada penggunaan PLTG sedangkan untuk hari lain skenario TOU akan digunakan dengan jadwal puncak dan di luar puncak ditentukan berdasarkan karakteristik beban perumahan.
Setelah skenario desain penetapan harga dinamis, maka dicoba untuk disuntikkan ke dalam biaya real estat untuk menganalisis perbandingan biaya listrik ketika menggunakan tarif tetap dan penetapan harga dinamis dan pengurangan penggunaan beban pada waktu puncak dan dampak dari pengurangan konsumsi listrik di tanaman di sistem Jawa Madura Bali.

The injustice in providing electricity rates with the current flat electricity tariff method encourages the desire to change the design pattern of tariff scenarios, namely dynamic pricing. Dynamic pricing has been tested in several western countries with various types of scenarios. However, for Indonesia itself, dynamic pricing is not yet familiar in the electricity sector. Departing from the problem of tariffs for supply of basic costs of plants that vary each time and usage patterns of electric loads dynamic pricing scenarios are designed in such a way that they match the characteristics in Indonesia.
In this study, we will discuss the design of dynamic pricing scenarios based on household and generator loads in the Java Madura Bali System. The tariff scenario design used is a combination of Critical Peak Pricing (CPP) and Time-of-Use (TOU), where CPP is only valid in 132 hours for one year depending on the use of PLTG while for other days the TOU scenario will be used with peak schedules and off-peak is determined based on the characteristics of the housing load.
After the scenario design dynamic pricing is made, then it is attempted to be injected into real estate costs to analyze the comparison of electricity costs when using flat tariffs and dynamic pricing and reduction in load usage at peak times and the impact of reducing electricity consumption in plants in the Java Madura Bali system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farrel Panca Agung
"Meningkatnya konsumsi energi listrik akan berpengaruh pada peningkatan beban puncak pada sistem ketenagalistrikan di indonesia. Tingginya biaya pokok penyediaan (BPP) pembangkit peaker mengakibatkan mahalnya biaya energi pada suatu sistem. Hal tersebut dapat diatasi dengan pengimplementasian Battery Energy Storage System (BESS) sebagai load shifting. Load shifting merupakan proses pemindahan pembebanan sistem pembangkitan suatu sistem tenaga listrik dari satu periode waktu dimana terdapat pembebanan yang tinggi ke periode waktu lainnya dimana terdapat pembebanan yang lebih rendah pada hari yang sama. BESS juga dapat dimanfaatkan untuk mengatasi intermitensi pembangkit energi terbarukan. Biaya investasi dari BESS semakin menurun setiap tahunnya. Pemanfaatan BESS pada sistem kelistrikan di Indonesia khususnya pada sistem Jawa-Bali terbilang masih kurang dibandingkan dengan potensi pemanfaatan yang ada. Penelitian ini bertujuan untuk menganalisis potensi implementasi BESS sebagai load shifting untuk menurunkan biaya energi pada sistem Jawa-Bali dengan menentukan kapasitas BESS yang akan digunakan dan kelayakan implementasinya secara finansial. Berdasarkan hasil perhitungan kapasitas BESS dengan rentang BPP cut-out sebesar Rp. 1600/kWh sampai Rp. 2200/kWh, menunjukan kapasitas BESS yang dibutuhkan untuk implementasi BESS sebagai load shifting adalah sebesar 1.206,48 - 3.181,12 MWh, dengan penurunan biaya sebesar Rp. 4,67 – 6 Triliun/tahun. Berdasarkan hasil perhitungan finansial untuk skenario 1 – 4 dengan nilai investasi BESS senilai $700 – 1000/kWh membutuhkan biaya invetasi sebesar Rp. 11,96 – 36,04 Triliun, dan menghasilkan Internal Rate of Return sebesar 7,72 - 32,69 %, Net Present Value sebesar Rp. -0,47 – 18.99 Triliun, dan Discounted Payback Period selama 4 – 19 tahun

Increased electricity consumption will influence increasing the peak load on the electricity system in Indonesia. The high cost of Cost of Energy (CoE) of peaker plants results in high energy costs in a system. This can be overcome by implementing the Battery Energy Storage System (BESS) as load shifting. Load shifting is the process of transferring the load of an electrical power system from one period where there is a high load to another period where there is a lower load on the same day. BESS can also be used to overcome the intermittency of renewable energy generator. The cost of investment from BESS is decreasing every year. The utilization of BESS in the electricity system in Indonesia, especially in the Java-Bali system is still less than the potential utilization. This research aims to analyze the potential implementation of BESS as load shifting to lower energy costs on the Java-Bali system by determining the capacity of BESS to be used and the feasibility of its implementation financially. Based on the results of BESS capacity calculation with the range of BPP cut-out of Rp. 1600 / kWh to Rp. 2200 / kWh, show the BESS capacity needed for the implementation of BESS as load shifting is 1,206.48 - 3,181.12 MWh, with a decrease in costs of Rp. 4.67 - 6 trillion / year. Based on the results of financial calculations for scenarios 1 - 4 with a BESS investment value of $ 700 – 1000 / kWh requires investment costs of Rp. 11.96 – 36.04 trillion and generates an Internal Rate of Return of 7.72 - 32.69 %, Net Present Value of Rp. -0.47 – 18.99 trillion, and Discounted Payback Period for 4 - 19 years
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fathur Nurmahdi
"Sistem penyimpanan energi saat ini telah berkembang pesat dan banyak digunakan pada suatu sistem tenaga listrik seiring berkembangnya teknologi yang masuk ke dalam dunia kelistrikan, salah satunya yaitu penggunaan baterai sebagai media penyimpanannya. Baterai digunakan untuk menyimpan energi yang disimpan pada suatu waktu ketika energi tersebut tidak banyak digunakan dan akan dilepas energinya pada suatu waktu yang sebaliknya. Dengan kata lain, baterai juga dapat digunakan untuk menggantikan pembangkit dengan harga Biaya Pokok Penyediaan (BPP) listrik yang mahal, sehingga anggaran yang dikeluarkan akan lebih hemat. Oleh karena itu, dibutuhkan ilmu tentang pengimplementasian teknologi Battery Energy Storage System (BESS) yang tepat pada suatu wilayah. Perhitungan yang tepat diperlukan untuk menentukan kapasitas baterai yang terpasang, serta besaran biaya finansial yang dikeluarkan. Berdasarkan hasil perhitungan kapasitas baterai yang terpasang, dapat dilakukan shifting pembangkit dengan rentang BPP dari Rp1500/kWh hingga Rp2000/kWh yang membutuhkan kapasitas baterai berkisar antara 606,58 – 882,94 MWh dengan penurunan biaya berkisar antara Rp2,94 hingga Rp3,9 Triliun/tahun. Selain itu, dari segi finansial didapatkan 4 (empat) skenario dengan variasi pada nilai investasi BESS sebesar $400 - $500 dan siklus charging-discharging sebesar 4.000 – 5.000, didapatkan biaya investasi BESS sebesar Rp3,64 hingga Rp6,62 Triliun/tahun, rentang Internal Rate of Return (IRR) berkisar antara 52,02 % - 74,65 %, rentang Net Present Value (NPV) berkisar antara Rp14,19 hingga Rp20,69 Triliun, dan Discounted Payback Period (DPP) selama 2-3 tahun.

Energy storage systems are currently growing rapidly and are widely used in an electric power system as technology develops into the world of electricity, one of which is the use of batteries as storage media. Batteries are used to store energy that is stored at a time when the energy is not used much and will be released energy at a time when it is not. In other words, batteries can also be used to replace generators with cost of electricity supply (BPP), so that the budget spent will be more efficient. Therefore, knowledge about the proper implementation of Battery Energy Storage System (BESS) technology is needed in an area. Precise calculations are needed to determine the capacity of the installed battery, as well as the number of financial costs incurred. Based on the calculation results of the installed battery capacity, it can be done shifting the power plant with a BPP range from Rp1500/kWh to Rp 2000/kWh which requires a battery capacity range from 606,58 – 882,94 MWh with cost reductions range from Rp2,94 to Rp3,9 Trillion/year. Furthermore, from a financial perspective, there are 4 (four) scenarios with variations in the BESS investment value of $400 - $500 and the charging-discharging cycle of 4,000 - 5,000, it gain the BESS investment cost is Rp3.64 to Rp6.62 trillion/year, Internal range Rate of Return (IRR) ranges from 52.02% - 74.65%, Net Present Value (NPV) ranges from Rp.14.19 to Rp.20.69 Trillion, and Discounted Payback Period (DPP) for 2-3 years."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dzulfikar Hanif Maulana
"Penetrasi pembangkit Energi Baru Terbarukan (EBT) pada saat ini di Indonesia semakin meningkat. Peningkatan tersebut disebabkan oleh berbagai macam hal diantaranya adalah cadangan energi fosil yang semakin menurun, emisi polusi yang semakin meningkat, dan juga kesadaran masyarakat akan pentingnya lingkungan tersebut. Meningkatnya penetrasi pembangkit EBT menyebabkan peningkatan penggunaan Battery Energy Storage System (BESS) sebagai Ancillary Service dalam menyeimbangkan frekuensi pada jaringan distribusi. Namun, dengan penggunaan BESS dalam menyeimbangkan frekuensi dapat menurunkan life time BESS akibat dari peningkatan cycle (charge dan discharge) yang mempengaruhi biaya investasi dari BESS. Salah satu upaya yang dapat dilakukan untuk mengatasi polemik tersebut adalah dengan menerapkan BESS sebagai pengoperasian Black start dalam peningkatan back-up sistem pada pembangkit bila terjadi gangguan yang menyebabkan pemadaman (Black Out). Penelitian ini bertujuan untuk mengetahui biaya investasi BESS sebagai Ancillary Service dengan minimum cycle dari baterai dalam penerapan pengoperasian Black Start. Penelitian ini dilakukan dengan menggunakan pendekatan matematis dalam memperhitungkan biaya yang dikeluarkan dalam pengoperasian Black Start tanpa menggunakan BESS dan dengan menggunakan BESS.

The penetration of New and Renewable Energy Generators (EBT) in Indonesia is currently on the rise. This increase is attributed to various factors, including the diminishing fossil energy reserves, escalating pollution emissions, and the growing awareness of environmental importance among the public. The increasing penetration of EBT generators has led to a rise in the utilization of Battery Energy Storage Systems (BESS) as an Ancillary Service for balancing the frequency in the distribution network. However, the use of BESS in frequency balancing can reduce the lifetime of BESS due to increased cycles (charge and discharge), which affects the investment costs of BESS. One approach to address this issue is to implement BESS for Black Start operations to enhance backup systems in power plants in the event of disruptions leading to a blackout. This research aims to determine the investment costs of BESS as an Ancillary Service with a minimum battery cycle in the application of Black Start operations. This study is conducted using a mathematical approach to calculate the expenses incurred in Black Start operations without utilizing BESS and with the use of BESS.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alvin Fanthony
"Pengukuran energi listrik menggunakan kWh meter harus memiliki akurasi yang sangat baik, oleh karena itu, tidak ada pihak yang secara finansial dirugikan antara konsumen dan pemasok listrik sebagai akibat dari kesalahan dalam pengukuran energi yang digunakan. Dengan meningkatnya penggunaan beban non-linier oleh konsumen dapat menyebabkan salah satu masalah kualitas daya dalam bentuk harmonik; yang dapat mempengaruhi tingkat akurasi dari hasil pengukuran yang sebenarnya. Di sisi lain, seiring berjalannya waktu, usia kWh meter juga memungkinkan terjadinya kesalahan dalam pembacaan karena kerja komponen kWh yang kurang optimal.
Dari hasil percobaan, pada beban rumah tangga, dapat dibuktikan bahwa semakin tinggi THD% (% THD-I> 15%), deviasi membaca akan semakin besar dengan kesalahan% tertinggi mencapai 4.4% pada analog kWh meter sementara meter digital kWh hanya 1,57%. Dalam pengukuran variasi beban, semakin banyak penggunaan beban non-linear, maka% THD akan meningkat. Dalam percobaan ini, lampu LED menghasilkan% THD-I tertinggi (mencapai 142,36%). Sementara itu variasi beban juga mempengaruhi% THD-I yang dihasilkan yang bergantung pada beban dominan pada daya yang dikonsumsi. Hasil uji beban variabel menunjukkan bahwa analog kWh meter yang tahun konstruksinya relatif panjang (lebih dari 15 tahun) tidak mampu mengukur beban dengan daya kecil (<100W) sehingga akan mempengaruhi tingkat akurasi yang sangat rendah.
Untuk kesalahan membaca persentase dari semua variasi beban, analog kWh meter (2002) mencapai 22,68%, analog kWh meter (2015) adalah 9,36%, dan digital kWh meter adalah 2,09%. Untuk persentase kesalahan membaca pada beban tinggi saja, 2,25% untuk analog kWh meter (2002), 1,15% untuk analog kWh meter (2015), sementara 0,68% untuk meter digital kWh. Dari semua percobaan yang dilakukan, dapat disimpulkan bahwa meter digital kWh memiliki akurasi yang lebih baik daripada analog kWh meter. Juga direkomendasikan untuk mengganti kWH meter analog yang telah dibangun cukup lama dengan tahun konstruksi baru atau dengan meter digital kWh agar tidak merugikan dari sisi pemasok listrik.

Measurement of electrical energy using kWh meter must have a very good of accuracy, therefore, none of any party is financially disadvantaged between the consumer and electricity supplier as a result of errors in the measurement of energy used. With the increasing use of non-linear load by consumers may cause one of the power quality problems in form of harmonics; that may affect the degree of accuracy of the actual measurement results. On the other hand, as the time goes by that the age of old kWh meter also allows to occurrence of errors in the reading due to the less optimal work of the kWh meter components.
From the experiment results, in the household load, it can be proved that the higher the %THD (%THD-I > 15%), the reading deviation will be greater with the highest % error reaching 4.4% on analog kWh meter while the digital kWh meter is only 1.57%. In the measurement of load variation, the more use of non- linear loads, the %THD will increase. In this experiment, the LED lamp produced the highest %THD-I (reaching 142.36%). Meanwhile the load variations also affected the %THD-I produced which depend on the dominant load on the power consumed. Variable load test results show that analog kWh meter whose construction years have been relatively long (more than 15 years) are not able to measure loads with a small power (<100W) so that it will affect the very low level of accuracy.
For the error reading percentage of all load variations, analog kWh meters (2002) reached 22.68%, analog kWh meters (2015) were 9.36%, and digital kWh meter were 2.09%. For error reading percentage at high load only, 2.25% for analog kWh meters (2002), 1.15% for analog kWh meters (2015), while 0.68% for digital kWh meters. From all the experiments carried out, it can be concluded that digital kWh meters have better accuracy than analog kWh meter. It is also recommended that to replace the analog kWH meter which has been construction for quite a long time with the new construction year or with digital kWh meter in order not to detriment from the electricity supplier side.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Daffa Burhany Syihab
"Sistem tenaga listrik Sumatra merupakan salah satu sistem tenaga listrik terbesar yang ada di Indonesia. Sistem tersebut terdiri dari gabungan 3 subsistem yaitu Sumatra Bagian Utara (Sumbagut), Sumatra Bagian Tengah (Sumbagteng), dan Sumatra Bagian Selatan (Sumbagsel). Salah satu subsistem tenaga listrik besar di Sumatra adalah sistem tenaga listrik Sumbagsel. Sistem tenaga listrik Sumbagsel disupply dayanya oleh berbagai jenis pembangkit listrik seperti PLTU, PLTA, PLTD, dll. Setiap pembangkit listrik tersebut memiliki BPP (Biaya Pokok Penyediaan) pembangkitan. Pembangkit listrik berbasis fosil dan gas memerlukan BPP yang cukup tinggi. Kemajuan teknologi khususnya teknologi baterai sebagai penyimpan energi memungkinkan pengurangan pengoperasian pembangkit berbasis fosil dan gas dengan menggunakan metode load shifting. Load shifting dilakukan untuk memindahkan daya yang dihasilkan oleh pembangkit listrik dengan BPP pembangkitan yang mahal menjadi daya yang dihasilkan oleh pembangkit listrik dengan BPP yang lebih murah sehingga optimalisasi biaya pun dapat dilakukan. Load shifting tersebut dilakukan dengan menggunakan BESS (Battery Energy Storage System) dimana charging akan dilakukan diluar WBP (Waktu Beban Puncak) dan discharging akan dilakukan pada saat waktu beban puncak. Oleh karena itu, studi BESS untuk load shifting sistem tenaga listrik Sumatra Bagian Selatan perlu dilakukan.

The Sumatran electric power system is one of the largest electric power systems in Indonesia. The system consists of a combination of 3 subsystems, namely Northern Sumatra (Sumbagut), Central Sumatra (Sumbagteng), and Southern Sumatra (Sumbagsel). One of the major power subsystems in Sumatra is the South Sumatra electric power system. The South Sumatra electric power system provides its power by various types of power plants such as PLTU, PLTA, PLTD, etc. Each of these power plants has a BPP (Cost of Provision) generation. Fossil and gas based power plants require a fairly high BPP. Technological advances, especially battery technology as an energy store, allow the reduction of fossil and gas-based operations using load transfer methods. Load transfer is carried out to transfer the power produced by power plants with an expensive generation BPP, while power plants with BPP can be cheaper so that cost optimization is carried out. The load transfer is carried out using BESS (Battery Energy Storage System) where charging will be done outside the WBP (Peak Load Time) and emptying will be carried out during peak load times. Therefore, it is necessary to conduct a BESS study for the Southern Sumatra electric load transfer system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiqi Mutiah
"Pemerintah Indonesia menyusun langkah mitigasi untuk perubahan iklim dan mencapai dekarbonisasi pada sektor transportasi laut dengan mendorong peningkatan penggunaan fasilitas listrik darat bagi kapal yang bersandar di Pelabuhan. Microgrid adalah salah satu teknologi transisi hijau yang menjanjikan yang memberikan manfaat besar bagi pelabuhan untuk mitigasi tantangan lingkungan. Untuk memastikan pengoperasian sistem yang optimal, menentukan konfigurasi microgrid dan ukuran komponen yang tepat merupakan keputusan penting pada tahap desain. Salah satu kegiatan penting di pelabuhan adalah pengangkutan hasil tambang, limbah B3, dan lainnya dengan menggunakan kapal yang dioperasikan dengan mesin diesel yang dikenal mahal dan tidak ramah lingkungan. Struktur yang terhubung ke kapal yang diusulkan terdiri dari sistem fotovoltaik dan sistem penyimpanan energi serta penunjang listrik darat di pelabuhan untuk memenuhi kebutuhan beban dengan mempertimbangkan parameter penting seperti penyinaran horizontal matahari global, suhu, dan data spesifikasi komponen untuk memasok listrik kapal selama bersandar untuk melakukan kegiatan kepelabuhan sehingga tidak menggunakan generator diesel yang ada di kapal. Untuk mengoptimalkan implementasi dari PV dan BESS tersebut, maka digunakan perangkat lunak Hybrid Optimization Model for Electric Renewable (HOMER) Pro versi 3.14.2 berdasarkan nilai biaya produksi bersih dan biaya listrik atau Cost of Energy (CoE) terendah. Dari hasil simulasi didapatkan bahwa implementasi PV-BESS dapat dilakukan dengan Hibrid Genset-PV-BESS dengan COE 0,226 US$/kWh. Dan implementasi Off-Grid PV-BESS dengan COE 0,378 US$/kWh.

The government of Indonesia developing mitigation for climate change and achieving decarbonization in the sea transportation sector by encouraging increased use of onshore power supply for ships when berthing at ports. Off-Grid is one of the green transition technologies that provide great benefits to ports for the mitigation of environmental. To ensure optimal system operation, determining the proper configuration and component sizes is an important decision at the design stage. One of the important activities at the port is the transportation of mining products, B3 waste, and others by using ships operated with diesel engines which are known to be expensive and not environmentally friendly. The configuration consists of a photovoltaic system and an energy storage system as well as land electricity support at the port then optimized by considering solar radiation, temperature, and data component specifications to supply power to the ship so that do not use diesel generators on board. To optimize the implementation of the PV and BESS, we use the Hybrid Optimization Model for Electric Renewable (HOMER) Pro version 3.14.2 software based on the lowest net production costs and electricity costs or CoE. From the simulation results, it was found that the implementation of PV-BESS can be carried out with a Hybrid Genset-PV-BESS with a COE of 0.226 US$/kWh. And implementation of Off-Grid PV-BESS with a COE of 0.378 US$/kWh."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Miller, Robert H.
New York: McGraw-Hill, 1983
621.319 MIL p
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>