Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 204023 dokumen yang sesuai dengan query
cover
Alfia Choirun Nisa
"Keberhasilan pembangunan suatu negara dapat dilihat dari kondisi kesejahteraan rakyatnya. Peningkatan kesejahteraan rakyat menjadi sasaran utama dalam kegiatan pembangunan yang dilaksanakan oleh pemerintah. Agar pembangunan yang dilakukan efektif dan tepat sasaran, perlu dilakukan pengelompokan untuk mengetahui karakteristik wilayah. Penelitian ini membahas mengenai pengelompokan kabupaten/kota di Pulau Jawa berdasarkan indikator kesejahteraan rakyat tahun 2022. Kesejahteraan yang diukur merupakan kesejahteraan materi. Variabel yang digunakan dalam penelitian ini adalah persentase penduduk miskin, PDRB per kapita atas dasar harga berlaku, rata-rata lama sekolah, harapan lama sekolah, persentase pengeluaran per kapita untuk makanan, tingkat pengangguran terbuka, jumlah penduduk, kepadatan penduduk, dan angka harapan hidup. Terdapat dua pendekatan yang digunakan dalam mengelompokkan kabupaten/kota beserta variabel-variabelnya. Pendekatan pertama adalah mengelompokkan kabupaten/kota dan variabel-variabelnya secara simultan dengan menggunakan metode biclustering plaid model. Pendekatan kedua adalah mengelompokkan kabupaten/kota menggunakan clustering metode Ward dan dilanjutkan dengan metode biplot. Tujuan penelitian ini adalah membandingkan hasil kedua pendekatan tersebut, yaitu hasil biclustering dan hasil cluster-biplot pada data 119 kabupaten/kota di Pulau Jawa pada tahun 2022 berdasarkan indikator kesejahteraan rakyat. Berdasarkan hasil penelitian, didapatkan jumlah kelompok dari kedua pendekatan tersebut adalah sebanyak 2 dengan kelompok 1 merupakan wilayah yang lebih sejahtera daripada kelompok 2. Ditinjau dari nilai standar deviasinya, kelompok hasil biclustering plaid model memiliki nilai standar deviasi yang lebih kecil dibanding kelompok hasil cluster-biplot. Dengan demikian, secara umum pendekatan pertama menghasilkan kelompok yang lebih baik karena lebih homogen dibandingkan dengan pendekatan kedua.

The success of a country's development can be known from the well-being of its people. Improving the welfare of the population is the main goal in the development activities carried out by government. To ensure that development is effective and targeted, grouping is needed to understand the characteristics of the region. This study discusses the grouping of regencies/cities in Java based on the people's welfare indicators in 2022. The measured welfare is material well-being. Variables used in this study are the percentage of the poor population, GDP per capita at current prices, average length of schooling, expected length of schooling, percentage of per capita expenditure on food, open unemployment rate, population, population density, and life expectancy. There are two approaches used in grouping regencies/cities along with their variables. The first approach is to group regencies/cities and their variables simultaneously using plaid model biclustering method. The second approach is to group regencies/cities using the Ward clustering method and then followed by the biplot method. The aim of this study is to compare the results of these two approaches, namely the biclustering results and the cluster-biplot results on data from 119 regencies/cities in Java in 2022 based on people's welfare indicators. Based on the results of this study, the number of groups from each approach is 2, with group 1 being more prosperous than group 2. Judging from the standard deviation values, the plaid model biclustering result groups have lower standard deviation values compared to the cluster-biplot result groups. Therefore, in general the first approach produces better groups as they are more homogeneous compared to the second approach."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Safitri
"Kemiskinan di Indonesia masih menjadi masalah yang harus diperhatikan setiap tahun. Menurut Laporan Susenas Maret 2022, Pulau Sulawesi menempati urutan ketiga dari enam pulau besar di Indonesia berdasarkan persentase penduduk miskin. Hal ini menunjukkan masih banyak penduduk di Pulau Sulawesi yang mengalami kemiskinan. Oleh karena itu, pemerintah perlu mengambil kebijakan yang tepat untuk mengatasi kemiskinan. Salah satu upaya yang dapat dilakukan pemerintah adalah dengan melakukan pengelompokan, yaitu mengelompokkan daerah-daerah kabupaten/kota di Pulau Sulawesi berdasarkan variabel-variabel kemiskinan. Tujuan penelitian ini adalah mengelompokkan data secara dua arah yaitu pengelompokan berdasarkan kabupaten/kota dan variabel-variabelnya secara bersamaan. Dengan terbentuknya pengelompokan kabupaten/kota dan variabel secara bersamaan akan mempermudah pemerintah untuk membuat kebijakan untuk mengatasi kemiskinan. Metode yang sesuai untuk mengelompokkan kabupaten/kota dan variabel-variabel secara bersamaan adalah metode biclustering. Metode biclustering dapat melakukan pengelompokan observasi dan karakteristik secara bersamaan sehingga terbentuk bicluster yang dapat dicirikan dengan karakteristik yang berbeda. Salah satu algoritma biclustering yaitu Iterative Signature Algorithm (ISA). Pengelompokan dengan menggunakan Iterative Signature Algorithm (ISA) memerlukan nilai ambang batas atas dan nilai ambang batas bawah. Nilai ambang batas adalah nilai yang digunakan untuk menentukan apakah suatu wilayah kabupaten/kota dan variabel-variabel dapat masuk ke dalam bicluster. Hasil yang terbaik dipilih berdasarkan rata-rata Mean Square Residu (MSR) per volume. Analisis biclustering pada data kemiskinan di Pulau Sulawesi tahun 2022 menggunakan Iterative Signature Algorithm (ISA) menghasilkan sebanyak 2 bicluster. Pemerintah diharapkan dapat membuat kebijakan yang tepat sesuai dengan masalah yang terjadi pada bicluster 1 dan bicluster 2.

Poverty in Indonesia is still a problem that must be addressed every year. According to the March 2022 Susenas report, Sulawesi Island ranks at third out of six major islands in Indonesia based on the percentage of the population living in poverty. This shows that there are still many people in Sulawesi Island who experience poverty.  Therefore, the government needs to take the right policy to overcome poverty. One of the efforts that the government can make is by clustering, namely grouping districts/cities on the island of Sulawesi based on poverty variables. The objective of this research is to group the data in two directions, namely grouping by district/city and its variables simultaneously. With the formation of groupings of districts/cities and variables simultaneously, it will be easier for the government to make policies to overcome poverty. The appropriate method to group districts/cities and variables together is the biclustering method. The biclustering method able to group observations and characteristics simultaneously so that biclusters formed that can be characterized differently. One of the biclustering algorithms is the Iterative Signature Algorithm (ISA). Clustering using the Iterative Signature Algorithm (ISA) requires an upper threshold value and a lower threshold value. Threshold value is the value used to determine whether a district/city and variables can be included in a bicluster. The best result is selected based on the average Mean Square Residu (MSR) per volume. Biclustering analysis of poverty data in Sulawesi Island in 2022 using Iterative Signature Algorithm (ISA) produce 2 biclusters. Based on this results, the government is expected to make a right policy to overcome poverty problems in bicluster 1 and bicluster 2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Felicia
"Sekolah adalah lembaga pendidikan formal yang bertujuan untuk memberikan pengajaran dan pembelajaran kepada siswa dalam berbagai bidang studi. Sekolah terdiri dari berbagai jenjang pendidikan, taman kanak-kanak hingga sekolah menengah atas. Kualitas performa suatu sekolah dapat diukur dengan melihat capaian Ujian Nasionalnya. Ujian Nasional tingkat SMA wajib diikuti oleh seluruh siswa kelas 12 dan dilaksanakan untuk menetapkan standar nasional yang akan digunakan untuk mengendalikan mutu pendidikan secara nasional. Analisis performa sekolah pada umumnya menggunakan metode konvensional sistem peringkat atau ranking berdasarkan nilai rata-rata Ujian Nasional. Analisis data nilai Ujian Nasional juga dapat dilakukan dengan berbagai cara termasuk pengelompokan data menggunakan algoritma clustering maupun biclustering. Metode clustering dapat digunakan untuk mengidentifikasi nilai sekolah yang mirip satu sama lain. Salah satu metode clustering yang populer digunakan adalah metode hierarki dan metode partisi (metode K-Means). Tetapi pada kenyataannya, masing-masing mata pelajaran memiliki penilaian yang sangat berbeda dari mata pelajaran lainnya. Penerapan biclustering pada metode pengelompokan ini diperlukan untuk mengungkap pola hubungan yang tidak terlihat antara nilai dan mata pelajaran pada data. Hal ini diimplementasikan dalam pengelompokan secara bersamaan dan simultan antara SMA (baris) dan mata pelajaran (kolom). Penelitian ini bertujuan untuk mengelompokkan SMA/MA di DKI Jakarta dan indikator nilai Ujian Nasional tahun 2019 menggunakan metode biclustering Cheng and Church dan Plaid Model serta membandingkan hasil penerapan metode tersebut menggunakan nilai indeks Jaccard dan variansi koherensi. Penelitian ini menggunakan data Capaian Nilai Ujian Nasional tahun 2019 pada SMA/MA di DKI Jakarta yang bersumber dari Kementerian Pendidikan dan Kebudayaan. Hasil penerapan metode biclustering Cheng and Church dan biclustering Plaid Model, menunjukkan bahwa bicluster-bicluster yang dihasilkan metode biclustering Plaid Model memiliki kisaran nilai indeks Jaccard dan variansi koherensi yang lebih rendah dibandingkan biclustering Cheng and Church. Hasil penelitian tersebut menunjukkan bahwa metode biclustering Plaid Model memberikan performa pengelompokan terbaik pada data Ujian Nasional. Diharapkan hasil penelitian ini dapat membantu memberikan wawasan terkait metode yang sesuai untuk diterapkan pada data dengan kondisi yang serupa.

A school is a formal educational institution aimed at providing teaching and learning to students in various fields of study. Schools consist of various levels of education, from kindergarten to high school. The quality of a school's performance can be measured by looking at its National Exam achievements. The National Exam at the high school level must be taken by all 12th-grade students and is conducted to establish national standards that will be used to control the quality of education on a national scale. School performance analysis generally uses conventional ranking systems based on the average National Exam scores. National Exam score data analysis can also be performed in various ways, including data clustering using clustering or biclustering algorithms. Clustering methods can be used to identify schools with similar scores. One of the popular clustering methods used is hierarchical clustering and partitioning methods (K-Means method). However, in reality, each subject has distinctly different assessments from other subjects. The application of biclustering in this clustering method is necessary to reveal hidden patterns of relationships between scores and subjects in the data. This is implemented in simultaneous grouping of both high schools (rows) and subjects (columns). This study aimsto cluster high schools (SMA/MA) in Jakarta and the 2019 National Exam score indicators using the Cheng and Church biclustering method and the Plaid Model biclustering method, and to compare the results of these methods using Jaccard index values and coherence variance. This study uses the 2019 National Exam Score Achievement data for high schools (SMA/MA) in Jakarta sourced from the Ministry of Education and Culture. The results of the application of the Cheng and Church biclustering method and the Plaid Model biclustering method show that the biclusters produced by the Plaid Model biclustering method have a lower range of Jaccard index values and coherence variance compared to Cheng and Church biclustering. The results of this study indicate that the Plaid Model biclustering method provides the best clustering performance for National Exam data. The findings of this study are expected to offer insights into the appropriate methods for application to similar data conditions."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zalfa Nurfadhilah Haris
"Kemiskinan merupakan salah satu masalah sosial yang masih menjadi perhatian pemerintah. Hampir seluruh negara berkembang memiliki standar hidup yang masih rendah. Salah satu cara untuk mengurangi kemiskinan adalah dengan menganalisis faktor-faktor yang memengaruhi Salah satu metode yang cocok dalam menganalisis tingkat kemiskinan adalah dengan menggunakan Geographically Weighted Regression (GWR). Hal ini dikarenakan dalam model GWR dipertimbangkan aspek spasial yang berbeda-beda untuk masing-masing lokasi pengamatan. Dalam model GWR dilakukan pendekatan analisis regresi yang digunakan untuk memahami hubungan spasial antara variabel-variabel dalam konteks geografi. Hal ini dikarenakan model GWR mempertimbangkan jarak lokasi pengamatan dengan lokasi sekitarnya, model GWR juga mempertimbangkan pembobot pada masing-masing lokasi pengamatan. Daerah yang dekat dengan lokasi pengamatakan mendapatkan pembobot yang lebih besar daripada daerah yang jauh dengan lokasi pengamatan, dalam hal ini penentuan pembobot dalam model GWR bergantung pada bandwidth. Dalam penelitian ini dilakukan analisis dengan mempertimbangkan empat pembobot spasial yaitu fixed gaussian kernel, fixed bisquare kernel, fixed tricube kernel, dan fixed exponential kernel yang diterapkan pada dua bandwidth yaitu bandwidth CV dan bandwidth AIC. Variabel dependen yang digunakan adalah tingkat kemiskinan dan variabel independen yang digunakan adalah rata-rata lama sekolah, upah minimum, tingkat pengangguran, indeks pembangunan manusia, angka harapan hidup dan jumlah penduduk. Hasil dari penelitian ini menunjukkan bahwa pada 118 Kabupaten/Kota di Pulau Jawa memiliki model GWR yang berbeda-beda. Untuk model GWR menggunakan bandwidth CV diperoleh model terbaik dengan menggunakan fixed exponential kernel dengan sembilan kelompok variabel yang signifikan, untuk model GWR menggunakan bandwidth AIC diperoleh model terbaik dengan menggunakan fixed bisquare kernel dengan enam kelompok variabel yang signifikan.

Poverty is one of the social issues that continues to be a concern for the government. Almost all developing countries have low living standards. One way to reduce poverty is by analyzing the factors that influence it. One suitable method for analyzing poverty levels is by using Geographically Weighted Regression (GWR). This is because the GWR model considers different spatial aspects for each observation location. In the GWR model, a regression analysis approach is used to understand the spatial relationship between variables in a geographical context. This is because the GWR model considers the distance between the observation location and its surrounding locations. The GWR model also considers weighting for each observation location. Areas close to the observation location are given a higher weight than areas far from the observation location. In this case, the determination of the weight in the GWR model depends on the bandwidth. This research analyzes four spatial weights, namely fixed Gaussian kernel, fixed bisquare kernel, fixed tricube kernel, and fixed exponential kernel, applied to two bandwidths: CV bandwidth and AIC bandwidth. The dependent variable used is the poverty rate, and the independent variables used are average length of schooling, minimum wage, unemployment rate, human development index, life expectancy, and population. The results of this study show that the 118 districts in Java Island have different GWR models. For the GWR model using the CV bandwidth, the best model is obtained using the fixed exponential kernel with nine significant variable groups. For the GWR model using the AIC bandwidth, the best model is obtained using the fixed bisquare kernel with six significant variable groups.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asita Darma Irawati
"Pertimbangan finansial menjadi salah satu penentu utama apakah seseorang akan melanjutkan
pendidikan ke tingkat yang lebih tinggi atau tidak, sehingga diperlukan beasiswa untuk
membantu mahasiswa dalam menempuh pendidikan tinggi, terutama hingga tingkat doktor.
Besar biaya yang dikeluarkan oleh lembaga penyedia beasiswa kepada penerima beasiswa
tentunya diharapkan sepadan dengan kualitas ilmu yang diperoleh. Oleh karena itu, penelitian
ini bertujuan untuk membahas analisis pengelompokan universitas terbaik dunia berdasarkan
komponen biaya pendidikan program doktor dengan metode K-Means. Universitas pada
penelitian ini diambil dari QS World University Rangkings (WUR) 2022. Analisis eksploratori
data dilakukan dan diperoleh bahwa terdapat 83 dari 472 universitas di dunia memberi bantuan
dana penuh untuk studi program doktor. Nilai Silhouette sebesar 0,72 menunjukkan bahwa tiga
merupakan jumlah kelompok yang optimal bagi data. Sehingga terbentuk kelompok A
sebanyak 328 universitas, kelompok B sebanyak 108 universitas, dan kelompok C sebanyak
36 universitas. Kelompok A terdiri dari universitas dengan SPP dan biaya hidup per bulan
relatif rendah, kelompok B sedang, dan kelompok C tinggi. Untuk biaya transportasi udara,
kelompok B cenderung rendah, sedangkan kelompok A dan C relatif serupa dan lebih mahal
dari kelompok B. Sementara untuk biaya visa, kelompok A cenderung lebih murah, sedangkan
kelompok B dan C cenderung serupa dengan biaya lebih mahal. Berdasarkan analisis ini,
penulis memberikan saran universitas yang bisa dipertimbangkan lembaga pemberi beasiswa
sebagai perguruan tinggi tujuan.

Financial concern has been one of the main reasons why an individual wants to pursue higher
education. That is why scholarship is needed to help students earn an education, especially until
doctoral degree. The amount of money spent by institution who give scholarship must be
equivalent with the quality of knowledge an awardee got. This study aims to do clustering
analysis of the world’s top universities based on tuition fee components for doctoral program
using K-Means method. The object of this study are universities based on QS World University
Rankings 2022. Exploratory data analysis is done and found that there are 83 out of 472
universities in the world who give fully funded program for doctoral study. Based on the
silhouette value of 0.72, three is the best number of clusters for the data. Group A, B, C consists
of 328, 108, and 36 universities in respective order. Group A consists of universities who have
chepear tuition fee and monthly living cost compared to Group B dan C. However, Group B
consists of universities who have cheaper transportation, meanwhile Group A and C are quiet
similar. For visa, Group A is cheaper compared to Group B and C which are similar. Based on
the results, recommendations are given to the institution who provide scholarship about the
objective university for doctoral study.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iing Fitria
"ABSTRAK
Menganalisis populasi bakteri Streptococcus adalah penting karena spesies ini dapat menyebabkan karies gigi, periodental (plak), halitosis (bau mulut) dan masih banyak lagi masalah yang dapat ditimbulkan. Dalam tesis ini akan dibahas hubungan kekerabatan antara bakteri Streptococcus pada air liur dengan menggunakan pohon filogenetik dari metode agglomerative clustering. Dimulai dengan adanya barisan DNA bakteri Streptococcus yang diambil dari pangkalan data gen (GenBank) yang akan disejajarkan, proses pensejajaran yang dilakukan menggunakan Algoritma Needleman-Wuncsh untuk pensejajaran global. Hasil pensejajaran tersebut berupa skor optimal yang merupakan jarak antara dua barisan DNA bakteri Streptococcus. Skor-skor optimal dikumpulkan dalam satu matriks kemudian membuat pohon filogenetik dengan metode agglomerative clustering yang terdiri atas teknik single linkage,complete linkage dan average linkage. Pada setiap teknik, banyaknya kelompok sama dengan banyaknya individu spesies. Spesies yang paling mirip dikelompokkan sampai akhirnya kemiripan berkurang maka terbentuk kelompok tunggal. Hasil dari pengelompokan berupa pohon filogenetik dan cabang-cabang yang bergabung merupakan tingkatan jarak yang terbentuk. Semakin kecil jarak, maka semakin besar kemiripan spesies serta mengimplementasikannya dengan menggunakan perangkat lunak berbasis open source (Oktave).

ABSTRACT
Analyzing population of Streptococcus bacteria is important because these spesies can cause dental caries, periodontal, halitosis (bad breath) and more problems.This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank to be aligned, the alignment is performed using the Neddleman-Wuncsh Algorithm for global alignment. The alignment results in the optimal score or the distance between DNA sequence of the bacterium Streptococcus one another. Optimal scores collected in a single matrix. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this technique the number of group sequal to the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller distance the more the similarity of the larger spesies implementation is using the Octave, an open source program."
2013
T35950
UI - Tesis Membership  Universitas Indonesia Library
cover
Evan Haryowidyatna
"Per 9 Februari 2023, 87% dari total populasi kendaraan pribadi di Indonesia merupakan sepeda motor. Persebaran sepeda motor terpadat di Indonesia berada di Pulau Jawa dengan persentase sebesar 60%. Tingginya populasi sepeda motor dan fakta bahwa 80% rumah tangga di Pulau Jawa sudah memiliki sepeda motor membuat pasar sepeda motor semakin mengecil. Dalam jangka panjang, kondisi ini dapat berdampak buruk bagi industri sepeda motor yang terus ingin berkembang. Penelitian ini membahas tentang pengelompokan kabupaten dan kota di Pulau Jawa berdasarkan karakteristik demografinya. Kemudian, diberikan saran keputusan yang dapat dilakukan oleh industri sepeda motor berdasarkan kelompok kabupaten dan kota yang terbentuk menggunakan teknik clustering. Hal ini bertujuan agar produsen yang bergerak di industri sepeda motor dapat memfokuskan produknya pada kelompok kabupaten dan kota yang memiliki potensi terbaik. Terdapat 12 variabel demografi yang digunakan dalam penelitian ini, dan variabel tersebut terbagi menjadi tiga kategori: kondisi ekonomi masyarakat, kondisi kehidupan masyarakat, dan kondisi demografis daerah. Metode yang digunakan dalam penelitian ini adalah metode partitional hard clustering. Sebelumnya, dilakukan pembuatan dataset melalui proses data scrapping pada situs terpercaya, dan dilanjutkan dengan proses Exploratory Data Analysis (EDA) pada dataset. Setelah dataset terbentuk, dilakukan pengelompokan dengan metode partitional hard clustering yang terdiri dari metode K-Means Clustering dan metode K-Medoids Clustering. Kemudian, dilakukan evaluasi cluster untuk menentukan metode clustering yang paling sesuai dengan menggunakan empat metrik evaluasi yaitu Indeks Silhouette, Indeks Dunn, Indeks Davies Bouldin, dan Indeks Calinski Harabasz. Didapatkan hasil bahwa metode K-Medoids Clustering dengan 5 kelompok merupakan yang terbaik untuk mengelompokkan kabupaten dan kota di Pulau Jawa. Setelah kelompok terbentuk, setiap kelompok diberikan rekomendasi keputusan yang sebaiknya diambil oleh industri sepeda motor. Terdapat 4 rekomendasi yang dapat diberikan, yaitu distribusi suku cadang, pembuatan bengkel, penjualan sepeda motor kelas menengah ke atas, dan penjualan sepeda motor kelas menengah ke bawah.

As of February 9, 2023, 87% of the total population of private vehicles in Indonesia consists of motorcycles. The densest distribution of motorcycles in Indonesia is found on the Island of Java, with a percentage of 60%. The high population of motorcycles and the fact that 80% of households in Java already have motorcycles are causing the motorcycle market to shrink. In the long run, this condition can have negative impacts on the motorcycle industry that continues to seek growth. This research focuses on the clustering of regencies and cities in Java based on their demographic characteristics. Subsequently, decision recommendations will be provided for the motorcycle industry based on the formed groups using clustering techniques. The aim is to enable manufacturers in the motorcycle industry to focus their products on regencies and cities with the best potential. There are 12 demographic variables used in this research, divided into three categories: the economic conditions of society, the living conditions of society, and the demographic conditions of the region. The method used in this research is the partitional hard clustering method. Firstly, a dataset is created through the data scraping process on trusted sites, followed by the Exploratory Data Analysis (EDA) process on the dataset. Once the dataset is formed, clustering is performed using the partitional hard clustering method, consisting of the K-Means Clustering and K-Medoids Clustering methods. Subsequently, cluster evaluation is carried out to determine the most suitable clustering method using four evaluation metrics: Silhouette Index, Dunn Index, Davies Bouldin Index, and Calinski Harabasz Index. The results show that the K-Medoids Clustering method with 5 clusters is the best for grouping regencies and cities in Java. After the groups are formed, each group is given decision recommendations that the motorcycle industry should consider. There are four recommendations: spare parts distribution, workshop establishment, sales of mid- to high-end motorcycles, and sales of mid-range motorcycles and below."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Permata Negara
"Analisis kelompok adalah metode multivariat yang bertujuan mengelompokkan pengamatan berdasarkan karakteristiknya. Salah satu metode analisis pengelompokan adalah metode cluster ensembel dengan pengelompokan dilakukan dengan satu metode berulang kali hingga diperoleh hasil yang lebih baik dibandingkan jika dilakukan satu kali. Penelitian ini mencoba menggunakan Cluster Ensemble Based Mixed Data Clustering (CEBMDC), yaitu metode pengelompokan yang biasa dilakukan untuk data dengan variabel campuran yaitu numerik dan kategorik. Tahap awal dalam metode ini yaitu membagi data awal menjadi data dengan hanya variabel-variabel numerik dan data dengan hanya variabel-variabel kategorik. Data yang telah dipisahkan berdasarkan jenis variabelnya kemudian dikelompokan menggunakan metode yang sesuai secara simultan. Hasil pengelompokan ini menjadi data baru dengan dua variabel kategorik yaitu hasil pengelompokan dengan variabel numerik dan hasil pengelompokan dengan variabel kategorik. Data baru dengan dua variabel kategorik ini kemudian dilakukan proses pengelompokan. Metode pengelompokan untuk data dengan variabel numerik adalah metode Hierarchical Agglomerative Clustering. Metode clustering untuk data kategorik adalah ROCK (RObust Clustering using linKs) dan K-medoids/PAM (Partition Around Medoids). Penelitian ini membandingkan hasil pengelompokan ROCK dan K-medoids. Pengelompokan dilakukan pada data mengenai sarana dan prasarana sekolah yang diambil dari 5.094 SMP yang ada di Jawa barat. Metode pengelompokan dengan kinerja terbaik pada penelitian ini adalah Ensemble K-medoids berdasarkan rasio antara simpangan baku di dalam kelompok (¬SW) dan simpangan baku antar kelompok (SB) terkecil. Penelitian ini menghasilkan 3 kelompok yang mencerminkan kondisi sekolah-sekolah pada jenjang SMP di Jawa Barat.
Clustering analysis is a multivariate method that aims to classify observations based on their characteristics. One method of clustering analysis is the ensemble clustering method in which the grouping is done using a method repeatedly until better results are obtained than if it is done once. This study uses the Cluster Ensemble Based Mixed Data Clustering (CEBMDC), which is a grouping method that commonly used for data with numerical and categorical variables. The first step in this method is to divide the initial data into two parts, that is data with only numerical variables and data with categorical variables. After data has been separated based on the types of variables, and then clustering using the appropriate method is conducted simultaneously. The results of these two clustering method become a new data with two categorical variables, namely the results of clustering with numeric variables and the results of clustering with categorical variables. The new data with two categorical variables are then carried out the clustering process. The clustering method for data with numerical variables is the Hierarchical Agglomerative Clustering method. Clustering methods for categorical data are ROCK (RObust Clustering using linKs) and K-medoids / PAM (Partition Around Medoids). This study compares the results of ROCK and K-medoids clustering. The study was conducted on data of school facilities and infrastructure taken from 5094 junior high schools in West Java. The best performance grouping method in this study is the Ensemble K-medoids based on the ratio between the standard deviation in the group (SW) and the smallest standard inter-group (SB) deviation. This study produced 3 groups that reflect the condition junior high schools in West Java."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Athiyyah Fadillah Eriri
"Pengelompokan atau clustering adalah pengelompokan objek-objek yang dilakukan atas dasar kesamaan atau jarak (perbedaan) di mana tidak ada asumsi yang dibuat mengenai banyaknya cluster atau struktur cluster. Salah satu metode yang banyak digunakan dalam penyelesaian masalah clustering adalah algoritme K-Means. Pada algoritme ini, suatu objek yang telah menjadi anggota cluster tertentu, tidak bisa menjadi anggota cluster yang lainnya. Metode ini dikenal sebagai hard clustering. Pendekatan lain dalam melakukan pengelompokan didasarkan pada teori himpunan fuzzy yang dikenal dengan pengelompokan fuzzy. Teori himpunan fuzzy memiliki nilai kekaburan antara salah atau benar. Jadi, dalam melakukan pengelompokan, setiap objek memiliki peluang menjadi anggota pada setiap cluster. Salah satu metode pengelompokan fuzzy adalah Fuzzy C-Means (FCM). Pada tugas akhir ini, metode K-Means dan FCM digunakan untuk mengelompokkan nagari-nagari di Kabupaten Agam. Nagari-nagari di Kabupaten Agam dikelompokan berdasarkan indikator pembangunan keluarga yang berasal dari Laporan Pendataan Keluarga tahun 2015 yang bersumber dari BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). Pada penelitian ini diperoleh empat cluster hasil dari indeks xie and beni. Jumlah anggota setiap cluster hasil dari algoritme K-Means adalah 32, 28, 11 dan 11. Sedangkan jumlah anggota setiap cluster hasil dari algoritme Fuzzy C-Means adalah 31, 18, 21, dan 12. Perbedaan jumlah anggota cluster yang dihasilkan algoritme K-Means dan Fuzzy C-Means adalah 14.29%. Karena rasio simpangan baku dalam dan antar cluster pada algoritme K-Means memberikan nilai yang lebih kecil dibandingkan algoritme Fuzzy C-Means maka algoritme K-Means memberikan hasil yang lebih baik dari pada algoritme Fuzzy C-Means dalam pengelompokan nagari-nagari di Kabupaten Agam.

Grouping or clustering is a method to group objects that are carried out on the basis of similarity or distance (difference) where no assumptions are made regarding the number of clusters or cluster structures. One method that is widely used in solving clustering problems is the K-Means algorithm. In this algorithm, if an object has become a member of a particular cluster, then it cannot become a member of another cluster. This method is known as hard clustering. Another approach to grouping is based on fuzzy set theory, known as fuzzy grouping. Fuzzy set theory has a blurring value between right or wrong. So, in grouping process, each object has the opportunity to become a member in each cluster. One of the fuzzy grouping methods is Fuzzy C-Means. In this study, the two methods, K-Means and Fuzzy C-Means, are used to group nagari-nagari in Agam District. Nagari is equivalent to villages in other provinces in Indonesia. The nagari grouping in Kabupaten Agam is based on family development indicators derived from the 2015 Family Data Collection Report sourced from BKKBN (Badan Kependudukan dan Keluarga Berencana Nasional). In this study four clusters were obtained based on xie and beni’s index. The numbers of members of each cluster as the result of the K-Means algorithm are 32, 28, 11 and 11. While the numbers of members of each cluster as the result of the Fuzzy C-Means algorithm are 31, 18, 21, and 12. The different cluster members produced by the K-Means and Fuzzy algorithms C-Means is 14.29%. Because the standard deviation ratio within and between clusters in the K-Means algorithm gives a smaller value than the Fuzzy C-Means algorithm, the K-Means algorithm gives better results than the Fuzzy C-Means algorithm on the nagari grouping in Agam District."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sri Agustina P.
"ABSTRAK
Salah satu metode dalam teknik Analisis Multivariat yang berkenaan dengar pengelompokan obyek atau variabel adalah Analisis Cluster. Analisis Cluster mengelompokkan obyek atau variabel semata-mata berdasarkan similaritas mereka, sehingga kelompok cluster yang dihasilkan akan memiliki variabilitas dalam cluster yang lebih kecil daripada variabilitas antar cluster. Dengan Analisis Cluster kita dapat memecahken populasi secara empirik dalam beberapa kelompok yang relatif homogen untuk memudahkan analisis statistik selanjutnya. Sebagai contoh aplikasi 5 Analisis Cluster dengan metode Nonhirarki (K-Means) digunakan untuk mengelompokkan secara empirik 324 Rumah Sakit Umum Departemen Kesehatan dan Pemerintah Daerah Republik Indonesia yang diukur peda 59 variabel untuk dilihat kesesuaiannya dengan pengelompokan atas tipe A. B. C. D. berasarkan kriteria Departemen Kesehatan Republik Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>