Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155368 dokumen yang sesuai dengan query
cover
Irham Muhammad Fadhil
"Meskipun pandemi COVID-19 sudah mereda yang ditandai dengan banyak negara yang melonggarkan pembatasanpembatasan, namun masih ditemui kasus dan kematian yang disebabkan oleh COVID-19. Salah satu metode pendeteksian COVID-19 adalah dengan menggunakan citra CT scan yang di-training menggunakan arsitektur berbasis deep learning. Namun, ketersediaan dataset publik mengenai hal tersebut sangat terbatas. Untuk mengatasi hal itu, diperlukan metode pembuatan citra sintesis berbasis GAN (generative adversarial networks) yang diharapkan dapat meningkatkan performa dari arsitektur deep learning. Salah satu arsitektur GAN yang dapat digunakan yakni TinyGAN yang memiliki parameter training yang lebih sederhana dari GAN namun tidak mengurangi performa yang dihasilkan. Hasil augmentasi citra sintesis menggunakan TinyGAN tersebut kemudian dibandingkan dengan metode berbasis GAN lainnya, seperti BigGAN yang mana diharapkan mengurangi cost komputasi sehingga dapat digunakan pada perangkat yang terbatas dari segi resource. Dari hasil percobaan yang telah dilakukan menunjukkan bahwa penggunaan augmentasi citra mampu meningkatkan performa secara keseluruhan, yakni akurasi sebesar 98.42% dan F1-score sebesar 98.48% dengan metode VGG 16 serta dalam pengujian menggunakan aplikasi berbasis web model mampu memprediksi dengan benar dan waktu running terbilang singkat, yakni 0.0036 detik. Dalam hal evaluasi kualitas citra, metode TinyGAN dalam hal inception score menghasilkan hasil yang lebih baik, yakni sebesar 2.2037 daripada metode BigGAN yang bernilai 2.03502. Sedangkan dalam hal frechet inception distance metode TinyGAN menghasilkan hasil yang lebih baik, yakni sebesar 39.833 daripada metode BigGAN yang bernilai 40.601.

Although the COVID-19 pandemic has subsided, which is marked by many countries easing restrictions, there are still cases and deaths caused by COVID-19. One to detect COVID-19 is to use CT scan images trained using a deep learning-based architecture. However, the availability of public datasets on this subject is very limited. To overcome this, a synthetic image generation method based on GAN (generative adversarial networks) is needed that is expected to improve the performance of the deep learning architecture. One of the GAN architectures that can be used is TinyGAN which has simpler training parameters than GAN but does not reduce the resulting performance. The results of the synthetic image augmentation using TinyGAN are then compared with other GAN-based methods, such as BigGAN which is expected to reduce computational costs so that it can be used on devices that are limited resources. From the results of experiments that have been carried out, it shows that the use of image augmentation resulted in increased performance (accuracy of 98.42% and F1-score of 98.48% using VGG16 method) and in testing using a web-based application model. able to predict correctly and the running time is relatively short, which is 0.0036 seconds. In terms of evaluating image quality, the TinyGAN method in terms of inception score produces better results, which is equal to 2.2037 than the BigGAN method which has a value of 2.03502. Whereas in terms of frechet inception distance the TinyGAN method produces better results, namely 39,833 compared to the BigGAN method which has a value of 40,60"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Arierta Pujitresnani
"[ABSTRAK
Rontgen dada atau Chest X-Ray (CXR) merupakan salah satu aplikasi pencitraan medis yang paling sering digunakan dalam pendeteksian kelainan khususnya tumor pada paru – paru. Untuk menentukan diagnosis kelainan tersebut, seorang dokter masih mengandalkan pengamatan visual dalam pembacaan hasil citra CXR sehingga penilaian bersifat subyektif tergantung pada masing – masing dokter. Oleh karena itu, pada penelitian ini dilakukan perancangan sistem pengolahan citra sebagai alat bantu identifikasi kelainan paru – paru. Kategori citra CXR yang digunakan adalah citra pada keadaan normal, tumor, dan kelainan bukan tumor. Tahapan pengolahan yang dilakukan berupa pre-processing menggunakan median filtering dan ekualisasi histogram serta proses segmentasi menggunakan otsu’s thresholding dan active contour : snake. Uji hasil pengolahan citra dengan hasil diagnosis dokter menggunakan jaringan syaraf tiruan backpropagation menghasilkan akurasi sebesar 92,85 %.

ABSTRACT
Chest X-Ray (CXR) is a medical imaging applications that most commonly used for detects of abnormalities, especially tumors of the lung. To determine the abnormality diagnosis, doctors still rely on visual observations to read a CXR image, so that the assessments are subjective depending on each doctor. This study purposes to design an image processing system as a tool for identification of lung’s abnormalities. It used three classification of CXR image, which are lungs image in normal circumstances, tumors, and abnormalities besides tumor. Stages of image processing are done in the form of pre-processing using a median filtering and histogram equalization and also the process of segmentation using Otsu's thresholding and active contour: snake. Test the image processing results with the results of the doctor's diagnosis using artificial neural network backpropagation produces an accuracy of 92,85 %., Chest X-Ray (CXR) is a medical imaging applications that most commonly used for detects of abnormalities, especially tumors of the lung. To determine the abnormality diagnosis, doctors still rely on visual observations to read a CXR image, so that the assessments are subjective depending on each doctor. This study purposes to design an image processing system as a tool for identification of lung’s abnormalities. It used three classification of CXR image, which are lungs image in normal circumstances, tumors, and abnormalities besides tumor. Stages of image processing are done in the form of pre-processing using a median filtering and histogram equalization and also the process of segmentation using Otsu's thresholding and active contour: snake. Test the image processing results with the results of the doctor's diagnosis using artificial neural network backpropagation produces an accuracy of 92,85 %.]"
2015
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Hilmizen
"Pada awal pandemi COVID-19, keputusan medis pada pasien ditentukan oleh dokter berdasarkan banyak tes medis (misalnya, tes reaksi berantai polimerase, tes suhu, CTScan atau X-ray). Metode transfer learning telah digunakan dalam beberapa penelitian dan berfokus hanya pada satu biomarker (misalnya, hanya CT-Scan atau X-Ray saja) untuk mendiagnosis pneumonia. Dalam studi terbaru, modalitas tunggal memiliki keakuratan klasifikasi sendiri dan setiap biomarker yang berbeda dapat memberikan informasi pelengkap untuk mendiagnosis COVID-19 pneumonia. Tujuan pada penelitian ini adalah membangun model multimodal yaitu dengan menggabungkan dua masukan (input) menjadi satu keluaran (output) pada tahapan pembuatan model. Dua model transfer learning yang berbeda telah digunakan pada masing-masing masukan dengan dataset open-source 2849 gambar CT-Scan dan 2849 gambar X-ray untuk mengklasifikasikan gambar CT-Scan dan gambar X-ray menjadi dua kelas: normal dan COVID-19 pneumonia. Model transfer learning yang digunakan adalah model DenseNet121, model MobileNet, model Xception, model InceptionV3, model ResNet50 dan model VGG16 untuk proses ekstraksi fitur. Alhasil, akurasi klasifikasi terbaik didapatkan sebesar 99,87% saat penggabungan jaringan ResNet50 dan VGG16. Kemudian, akurasi klasifikasi terbaik didapatkan sebesar 98,00% saat menggunakan modalitas tunggal model ResNet50 dengan data CT-Scan dan akurasi klasifikasi sebesar 98,93% untuk model VGG16 dengan data X-Ray. Metode penggabungan multimodal learning menunjukkan akurasi klasifikasi yang lebih baik dibandingkan dengan metode yang menggunakan hanya satu modalitas saja.

Due to COVID-19 Pandemic, medical decisions on patients were made by doctors based on many medical tests (e.g., polymerase chain reaction test, temperature test, CT-Scan or X-ray). Transfer learning methods have been used in several studies and focus on only one biomarker (eg, CT-Scan or X-Ray only) for diagnosing pneumonia. In recent studies, a single modality has its own classification accuracy and each different biomarker can provide complementary information for diagnosing COVID-19 pneumonia. The purpose of this research is to build a multimodal model by combining two inputs (inputs) into one output (output) at the modeling stage. Two different transfer learning models were used at each input with an open-source dataset of 2849 CT-Scan images and 2849 X-ray images to classify CT-Scan images and X-ray images into two classes: normal and COVID-19 pneumonia. . The transfer learning model used is the DenseNet121 model, the MobileNet model, the Xception model, the InceptionV3 model, the ResNet50 model and the VGG16 model for the feature extraction process. As a result, the best classification accuracy was obtained at 99.87% when merging the ResNet50 and VGG16 networks. Then, the best classification accuracy was obtained at 98.00% when using a single modality ResNet50 model with CT-Scan data and a classification accuracy of 98.93% for the VGG16 model with X-Ray data. The multimodal learning combination method shows better classification accuracy than the method that uses only one modality."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Putri Rizqiyah
"Vaksinasi COVID-19 merupakan salah satu solusi jangka panjang untuk mengatasi pandemi COVID-19 di Indonesia. Topik vaksinasi COVID-19 menjadi perbincangan yang hangat, khususnya di media sosial. Berbagai macam pro dan kontra mengenai program vaksinasi terus bermunculan sehingga penelitian mengenai analisis publik terhadap program vaksinasi COVID-19 sangat berguna untuk komunikasi publik. Penelitian ini berfokus kepada lima jenis vaksin yang banyak digunakan di Indonesia yaitu, AstraZeneca, Moderna, Pfizer, Sinopharm dan Sinovac. Sebanyak 252,805 data dikumpulkan melalui media sosial twitter menggunakan Twitter API di tahun 2021. Lalu sebanyak 11,361 dipilih secara acak untuk dianotasi secara manual. Selanjutnya, proses klasifikasi dilakukan menggunakan model bahasa XLMR dan beberapa metode baseline berbasis pre-trained language model, deep learning, machine learning dan lexicon. Augmentasi data seperti Easy Data Augmentation (EDA), An Easier Data Augmentation (AEDA) dan Seqgan juga dilakukan untuk menyeimbangkan jumlah kelas data minoritas. Pembagian data latih dan data uji dilakukan dengan menggunakan dua metode yaitu simple random sampling dan stratified sampling untuk mengetahui performa model yang dilatih. Hasil penelitian menunjukkan bahwa metode yang diusulkan yaitu XLMR, memiliki performa yang tinggi dibandingkan metode baseline lainnya, dengan akurasi sebesar 71.91% sebelum dilakukan augmentasi dan 72.19% setelah dilakukan augmentasi menggunakan Seqgan menggunakan metode pembagian data simple random sampling. Lalu, dengan menggunakan metode pembagian data stratified, XLMR juga memiliki performa terbaik dengan akurasi 59.96% sebelum dilakukan augmentasi dan 74.37% setelah dilakukan augmentasi menggunakan EDA. Penelitian ini akan sangat bermanfaat untuk komunikasi publik dengan kasus serupa. Di masa yang akan datang, penelitian ini bisa dilanjutkan dengan melakukan domain transfer untuk meningkatkan performa model.

COVID-19 vaccination is one of the long-term solutions to address the COVID-19 pandemic in Indonesia. The topic of COVID-19 vaccination has become a hot discussion, especially on social media. Various pros and cons regarding the vaccination program continue to emerge, making research on public analysis of the COVID-19 vaccination program very useful for public communication. This study focuses on five types of vaccines widely used in Indonesia, namely AstraZeneca, Moderna, Pfizer, Sinopharm, and Sinovac. A total of 252,805 data were collected through social media Twitter using the Twitter API in 2021. Then, 11,361 were randomly selected to be manually annotated. Subsequently, the classification process was performed using the XLMR language model and several baseline methods based on pre-trained language models, deep learning, machine learning, and lexicon. Data augmentation such as Easy Data Augmentation (EDA), An Easier Data Augmentation (AEDA), and Seqgan was also carried out to balance the number of minority class data. The division of training data and test data was done using two methods, namely simple random sampling and stratified sampling, to determine the performance of the trained model. The results of the study show that the proposed method, XLMR, has high performance compared to other baseline methods, with an accuracy of 71.91% before augmentation and 72.19% after augmentation using Seqgan with the simple random sampling data splitting method. Then, using the stratified data splitting method, XLMR also had the best performance with an accuracy of 59.96% before augmentation and 74.37% after augmentation using EDA. This research will be very useful for public communication with similar cases. In the future, this research can be continued by conducting domain transfer to improve model performance."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andi Amiratania Bastari
"Penelitian ini bertujuan untuk menganalisis bagaimana penerima beasiswa sebagai salah satu stakeholder kebijakan luar negeri Tiongkok mempersepsikan diplomasi publik dan citra negara Tiongkok selama pandemi COVID-19. Pertama, diplomasi publik yang dilakukan Tiongkok dalam kerangka informasional dan relasional diidentifikasikan. Diplomasi publik yang dilakukan Tiongkok sebagai alat komunikasi krisis juga akan dilihat melalui Image Repair Theory. Selanjutnya, wawancara mendalam dengan tiga penerima beasiswa dan narasumber ahli dilakukan untuk menganalisis persepsi mereka terkait diplomasi publik dan citra negara Tiongkok selama pandemi COVID-19, di mana citra negara terdiri dari empat aspek; fungsional, estetik, normatif, dan emosional. Hasil penelitian menunjukkan bahwa Tiongkok telah melakukan networking, messaging, bolstering dan corrective action. Secara informasional, selain dari sumber informasi domestik Tiongkok, informan juga mencari informasi pada media sosial Kedutaan Tiongkok di Indonesia. Secara relasional, vaccine diplomacy dinilai efektif untuk memperbaiki citra negara Tiongkok, walaupun belum dieksploitasi secara maksimal. Dalam persepsi citra negara, hanya tiga aspek yang teridentifikasikan, di mana aspek normative merupakan aspek yang paling menonjol.

This study aims to analyze how scholarship recipients as one of China's foreign policy stakeholders perceive public diplomacy and the country image of China during the COVID-19 pandemic. First, China's public diplomacy in an informational and relational framework is identified. China's public diplomacy as a crisis communication tool will also be seen through the Image Repair Theory. Furthermore, in-depth interviews with three scholarship recipients and expert resource person were conducted to analyze their perceptions regarding public diplomacy and the China’s country image during the COVID-19 pandemic, where country image consists of four aspects; functional, aesthetic, normative, and emotional. The results showed that China had carried out networking, messaging, bolstering, and corrective action. Informationally, apart from Chinese domestic sources of information, informants also seek information on social media of the Chinese Embassy in Indonesia. Relationally, vaccine diplomacy is considered effective in improving the image of the Chinese state, although it has not been exploited to its full potential. Regarding perception of China’s country image, only three aspects were identified, of which the normative aspect is the most prominent aspect"
Depok: Fakultas Ilmu Sosial dan Ilmu Politik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadya Novalina
"COVID-19 adalah penyakit infeksi menular yang disebabkan oleh virus SARS-CoV-2 dan dapat menyebabkan gangguan pada sistem pernapasan. Pencitraan X-Ray dapat menjadi alternatif dalam mendeteksi COVID-19 karena mampu menggambarkan kondisi paru-paru pasien. Deep learning dapat digunakan untuk menganalisis pola pada citra medis secara otomatis. Untuk itu, digunakan Convolutional Neural Network dengan teknik transfer learning menggunakan arsitektur Xception, EfficientNetB3, dan ensemble dari kedua model secara paralel untuk deteksi COVID-19 dan tingkat keparahannya dari citra X-Ray dada secara otomatis. Klasifikasi COVID-19 dilakukan untuk empat jenis kelas, yaitu: positif COVID-19, normal, pneumonia bakteri dan pneumonia virus. Pada klasifikasi COVID-19, ketiga model classifier yang diusulkan mencapai akurasi keseluruhan untuk semua kelas sebesar 94,44% untuk classifier Xception, 95,28% untuk classifier EfficientNetB3, dan 94,44% untuk classifier paralel. Nilai akurasi tersebut lebih tinggi dari nilai akurasi classifier lain. Klasifikasi tingkat keparahan COVID-19 dilakukan untuk tiga jenis kelas yaitu: ringan, sedang, dan parah. Pada klasifikasi tingkat keparahan COVID-19, ketiga model classifier yang diusulkan mencapai akurasi keseluruhan untuk semua kelas sebesar 70,00% untuk classifier Xception, 67,50% untuk classifier EfficientNetB3 dan paralel. Nilai akurasi tersebut lebih tinggi dari nilai akurasi classifier lain. Secara keseluruhan, ketiga classifier yang diusulkan dapat direkomendasikan sebagai alat yang dapat membantu ahli radiologi dan praktisi klinis dalam diagnosis dan tindak lanjut kasus COVID-19.

COVID-19 is a contagious infectious disease caused by the SARS-CoV-2 virus and can cause disorders of the respiratory system. X-Ray imaging can be an alternative in detecting COVID-19 because it is able to describe the condition of the patient's lungs. Deep learning can be used to analyze patterns in medical images automatically. For this reason, Convolutional Neural Network is used with transfer learning techniques using Xception, EfficientNetB3 architecture, and an ensemble of both models in parallel for the detection of COVID-19 and its severity level from Chest X-Ray images automatically. The classification of COVID-19 is carried out for four types of classes, namely: positive COVID-19, normal, bacterial pneumonia, and viral pneumonia. In the COVID-19 classification, the three proposed classifier models achieve overall accuracy for all classes of 94.44% for the Xception classifier, 95.28% for the EfficientNetB3 classifier, and 94.44% for the parallel classifier. The accuracy value is higher than the other classifier accuracy values. The classification of the severity level of COVID-19 is carried out for three types of classes, namely: mild, moderate, and severe. In the classification of the severity level of COVID-19, the three proposed classifier models achieve overall accuracy for all classes of 70.00% for the Xception classifier, 67.50% for the EfficientNetB3 classifier and parallel. The accuracy value is higher than the other classifier accuracy values. Overall, the three proposed classifiers can be recommended as tools that can assist radiologists and clinical practitioners in the diagnosis and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianturi, Julius Hotma Baginda
"COVID-19 merupakan penyakit yang telah menjadi pandemi pada tahun 2020. Penyakit ini dinyatakan sebagai pandemi karena menjadi wabah yang sangat luas hingga seluruh dunia terpapar. Dalam usaha penekanan penyebaran penyakit COVID-19, banyak peneliti yang menerapkan deep learning untuk mendeteksi penyakit ini. Convolutional Neural Network(CNN) merupakan jenis deep learning yang paling banyak digunakan untuk usaha mengklasifikasi citra X-ray paru-paru. Algoritma yang dikembangkan pada penelitian ini menggunakan deep learning dengan model CNN ResNet152v2 dengan Python untuk bahasa pemrogramannya serta Keras Tensorflow sebagai API. penelitian ini melakukan beberapa ekperimen untuk meningkatkan akurasi dan performa dengan memvariasikan dataset serta parameter seperti epoch, batch size, optimizer. Performa terbaik didapatkan dengan pengaturan parameter pada jumlah dataset 3000, epoch 15, batch size 16, dan optimizer Nadam dengan nilai akurasi hingga 96%. Hasil akurasi ini merupakan peningkatan yang didapatkan penelitian terdahulu yang menggunakan model VGG16 dengan akurasi hingga 92%.

COVID-19 is a disease that has become a pandemic in 2020. This disease is declared a pandemic because it is an epidemic that is so widespread that the entire world is exposed. In an effort to suppress the spread of the COVID-19 disease, many researchers have applied deep learning to detect this disease. Convolutional Neural Network (CNN) is a type of deep learning that is most widely used to classify X-ray images of the lungs. The algorithm developed in this study uses deep learning with the CNN ResNet152v2 model with Python for the programming language and Keras Tensorflow as the API. This study conducted several experiments to improve accuracy and performance by varying the dataset and parameters such as epoch, batch size, optimizer. The best performance is obtained by setting parameters on the number of datasets 3000, epoch 15, batch size 16, and optimizer Nadam with an accuracy up to 96%. The result of this accuracy is an improvement obtained from previous studies using the VGG16 model with an accuracy of up to 92%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devia Puspita Natalicka
"Salah satu terapi COVID-19 adalah plasma konvalesen yang disiapkan Unit Transfusi Darah dari donor yang telah sembuh dari COVID-19. Plasma konvalesen mengandung antibodi netralisasi yang menghambat interaksi antara protein S dengan reseptor ACE2 dengan persyaratan minimal titer 1:160 sehingga diperlukan sistem deteksi antibodi netralisasi seperti tes serologi berbasis ELISA kompetitif yang mudah, murah, cepat dan tidak membutuhkan BSL 3 atau 2. Uji ini membutuhkan protein rekombinan spike S1 yang dapat diekspresikan pada sistem ekspresi mamalia. Penelitian ini bertujuan untuk mendeteksi antibodi spesifik SARS-CoV-2 pada plasma konvalesen COVID-19 menggunakan protein rekombinan Spike S1.Penelitian ini menggunakan plasmid pD609 sebagai vektor ekspresi yang terdapat gen spike S1. DNA ditransfeksi secara transien ke sel CHO. Immunostaining dilakukan setelah transfeksi untuk melihat ekspresi protein rekombinan spike S1 pada sel CHO. Supernatan media sel CHO post transfeksi dianalisis dengan western blot dan ELISA untuk melihat reaktifitas terhadap serum konvalesen COVID-19. Hasil immunostaining menunjukkan plasmid pD609 S1 Spike Foldon-His dapat mengekspresikan protein rekombinan spike S1 SARS-CoV-2 pada sel CHO. Hasil Western Blot dan ELISA menunjukkan supernatan media sel kultur CHO post transfeksi reaktif terhadap serum konvalesen COVID-19. Protein rekombinan spike S1 memiliki potensi untuk dikembangkan dan digunakan dalam uji antibodi spesifik namun hasil ekspresi protein masih rendah.

One of the therapies for COVID-19 is convalescent plasma prepared by the Blood Transfusion Unit from donors who have recovered from COVID-19. Convalescent plasma contains neutralizing antibodies that inhibit the interaction between S protein and ACE2 receptors with a minimum requirement of a titer of 1:160 so that a neutalizing antibody detection system is needed such as a competitive ELISA-based serological test that is easy, inexpensive, fast, and does not require BSL 3 or 2. S1 spike recombinant protein that can be expressed in mammalian expression systems. This study aims to detect SARS-CoV-2 specific antibodies in COVID-19 convalescent plasma using recombinant Spike S1 protein. This study used the pD609 plasmid as an expression vector containing the spike S1 gene. DNA was transiently transfected into CHO cells. Immunostaining was performed after transfection to see the expression of the S1 spike recombinant protein in CHO cells. The post-transfected CHO cell media supernatans were analyzed by western blot and ELISA to see the reactivity to COVID19 convalescent serum. Immunostaining results showed that the plasmid pD609 S1 Spike Foldon-His could express the SARS-CoV-2 spike S1 recombinant protein in CHO cells. The results of Western blot and ELISA showed that the post-transfection CHO cell culture media supernatant was reactive to COVID-19 convalescent serum. S1 spike recombinant protein has the potential to be developed and used in specific antibody assays, but the results of protein expression is still low."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bariqi Abdillah
"Penelitian ini menerapkan dan menganalisa teknik pengolahan citra untuk deteksi kanker paru-paru. Teknik pengolahan citra banyak digunakan di beberapa masalah medis untuk perbaikan citra dalam deteksi fase dan pengobatan dini. Penelitian ini mengusulkan metode deteksi kanker paru-paru berbasis segmentasi citra. Segmentasi citra adalah salah satu pengolahan tingkat menengah dalam pengolahan citra. Pendekatan wilayah dan watershed digunakan untuk proses segmentasi citra CT scan. Fase deteksi yaitu peningkatan kualitas citra menggunakan filter Gabor, segmentasi citra, dan ekstraksi fitur dengan binerisasi. Dari hasil percobaan, ditemukan efektivitas dari pendekatan tersebut. Fitur utama untuk mendeteksi kanker adalah dengan menggunakan perbandingan yang dilakukan dengan persentase piksel dan penanda citra.

In this undergraduate thesis, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for repairs picture in the phase detection and early treatment. This research proposed a detection method of lung cancer using image segmentation. Image segmentation is one of intermediate level processing in image processing. Marker control and watershed approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction with binarization. From the experimental results, we found the effectiveness of our approach. The main detected features for accurate images comparison are mask labeling with high accuracy and robust.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64589
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajar Indah Fitriasari
"Pencitraan 'X-ray' dapat digunakan sebagai alternatif penunjang diagnostik klinis untuk mendeteksi penyakit COVID-19 pada paru-paru pasien. 'Machine learning' atau 'Deep Learning' akan disematkan pada 'computer-aided-diagnosis' (CAD) untuk meningkatkan efisiensi dan akurasi dalam menangani permasalahan membedakan COVID-19 dengan penyakit lain yang memiliki karakteristik yang serupa. Beberapa sistem kecerdasan buatan berbasis 'Convolutional Neural Network' (CNN) pada penelitian sebelumnya, memiliki akurasi yang menjanjikan dalam mendeteksi COVID-19 menggunakan citra 'X-ray' rongga dada. Dalam penelitian ini, dikembangkan 'classifier' berbasis CNN dengan teknik 'transfer learning', yakni memanfaatkan model CNN pra-terlatih dari ImageNet bernama Xception dan ResNet50V2 yang dikombinasikan agar sistem menjadi lebih akurat dalam kemampuan ekstraksi fitur untuk mendeteksi COVID-19 melalui citra 'X-ray' rongga dada. 'Classifier' yang dikembangkan terdiri dari 2 jenis, yakni 'classifier' yang disusun secara serial dan paralel. Pengujian dilakukan dalam 2 skenario berbeda. Pada skenario 1, digunakan 'dataset' dan pengaturan parameter yang mengacu pada penelitian sebelumnya, sedangkan skenario 2 dilakukan dengan menambahkan sejumlah citra kedalam 'dataset' baru serta pengaturan parameter yang berbeda untuk memperoleh peningkatan akurasi. Dari pengujian untuk kelas COVID-19 pada skenario 1, diperoleh 'classifier' paralel berhasil menggungguli 'classifier' lain dengan mencapai akurasi rata-rata 93,412% serta memperoleh 'precision', 'recall,' dan 'f1-score' masing – masing mencapai 96.8%, 99.6% dan 98%. Pada skenario 2, 'classifier' paralel mencapai akurasi rata-rata yang lebih tinggi, yakni mencapai 96,678% serta memperoleh 'precision', 'recall,' dan 'f1-score' yang cukup tinggi pula, yakni masing – masing mencapai 98.8%, 99.8% dan 99.4% untuk kelas COVID-19. Adanya penambahan jumlah 'dataset' pada skenario 2 dapat meningkatkan akurasi dari 'classifier' yang dikembangkan. Secara keseluruhan, 'classifier' paralel yang dikembangkan dapat direkomendasikan menjadi alat yang dapat membantu praktisi klinis dan ahli radiologi untuk membantu mereka dalam diagnosis, kuantifikasi, dan tindak lanjut kasus COVID-19.

X-ray imaging can be used as an alternative support clinical diagnostics to detect COVID-19 in the patient's lungs. Machine learning or Deep Learning will be embedded in computer-aided diagnosis (CAD) to increase efficiency and accuracy in dealing with problems distinguishing COVID-19 from other diseases that have similar characteristics. Several artificial intelligence systems based on the Convolutional Neural Network (CNN) in previous studies have promising accuracy in detecting COVID-19 using Chest X-ray images. In this study, a CNN-based classifier with transfer learning techniques was developed, which utilizes a pre-trained CNN model from ImageNet named Xception and ResNet50V2 combined that makes the system powerful using multiple feature extraction capabilities to detect COVID-19 through Chest X-ray images. There are 2 types of classifiers developed, classifiers arranged in serial and parallel. The testing in this study was carried out in two different scenarios. In the scenario 1, the dataset and parameter settings are used referring to previous studies, while the scenario 2 was carried out by adding several images to the new dataset and setting different parameters to obtain increased accuracy. From testing of the COVID-19 class in the scenario 1, the parallel classifier succeeded in outperforming other classifiers by achieving an average accuracy in 93.412% and also obtains precision, recall and f1-score, which reached 96.8%, 99.6%, and 98% respectively. In the scenario 2, the parallel classifier achieved a higher average accuracy of 96.678%, and also obtained quite high precision, recall and f1-score, which reached 98.8%, 99.8% and 99.4% for the COVID-19 class, respectively. The addition of the number of datasets in scenario 2 can increase the accuracy of the developed classifier. Overall, the developed parallel classifier can be recommended as a tool that can help clinical practitioners and radiologists to aid them in diagnosis, quantification, and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>