Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9275 dokumen yang sesuai dengan query
cover
Dijan Supramono
"Bio-oil produced by biomass pyrolysis contains high oxygenates, namely, carboxylic acids, alcohols, and ketones resulting in low calorific fuel, and therefore bio-oil requires upgrading to sequester these oxygenates. By conducting the co-pyrolysis of biomass and plastic feed blend, the donation of hydrogen by plastic free radicals to the oxygen of biomass free radicals may sufficiently reduce oxygenate compounds in the bio-oil and increase its yield. Therefore, the synergetic effects are functional. Currently, co-pyrolysis reactors have high aspect ratios (ratio of height to diameter) of 4 or more and small diameters (maximum 40 mm), in which the heat transfer from the furnace to the feed blend is immaterial even though the plastic material has low thermal conductivity. However, in large-scale reactors, such a design restricts the bio-oil’s capacity due to the heat transfer constraint. To resolve the latter and to improve bio-oil quality, in the present work, the co-pyrolysis of corn cobs and polypropylene (PP) is conducted in a stirred-tank reactor with a low aspect ratio (2). PP composition in the feed blend was varied from 0-100% weight with a 12.5% weight interval, heating rate of 5oC/min, and final temperature of 500oC. The results show that by increasing the PP composition in the feed blend from 37.5% to 87.5%, the bio-oil yield increased from 25.8% to 67.2% feed weight. An analysis of bio-oil quality shows that there was a favorably abrupt increase of non-oxygenate composition in the bio-oil from less than 5% to more than 70% as the PP composition in the feed blend was increased from 37.5% to 50% and more."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:8 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Julianto
"ABSTRAK
Pada penggunaan stirred tank reaktor dengan rasio Length/Diameter yang rendah, terjadi beberapa masalah dalam transfer panas, karena itu, fasa polar pada hasil pirolisis masih memiliki panjang rantai karbon yang panjang. Dengan mengubah cara feeding dari twice feeding, menjadi gradual feeding, diharapkan dapat meningkatkan jumlah fasa polar pada panjang rantai karbon rendah. Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Polipropilena adalah jenis plastik yang cukup banyak dihasilkan di Indonesia dan selain itu memiliki ratio Hydrogen/Carbon yang tinggi. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,75 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Dari eksperimen ini terlihat bahwa proses slow co pyrolysis memiliki 2 regime yang dapat terlihat dari jumlah peningkatan yield bio-oil dan peningkatan signifikan pada volume polar. Hasil FTIR dan GC-MS menunjukan adanya fasa polar yang dominan oleh karboksilat dan fenol, pada fasa polar dominan oleh alkena. Untuk digunakan sebagai bio-fuel, bio-oil memiliki nilai TAN total acid number yang rendah pada fasa polar, dan viskositas yang mendekati dengan bahan bakar komersial.

ABSTRACT
In the use of stirred tank reactors with low Length Diameter ratios, there are some problems in heat transfer, therefore, the polar phase on the pyrolysis results still has long carbon chain length. By changing the way feeding of the two step feeds, to gradual feeding, is expected to increase the number of polar phases at low carbon chain lengths. Corncobs are selected as biomass because of their high total cellulose content and abundant availability in Indonesia. Polypropylene is a type of plastic that is widely produced in Indonesia and other than it has a high Hydrogen Carbon ratio. By mixing the two, a synergetic effect will be created to improve the quantity and quality of the resulting bio oil. Operating conditions with a maximum temperature of 500oC, N2 flow rate of 0.75 L min, holding time of 10 min and a heating rate of 5oC min were used during the experiment. From this experiment we can see that the slow co pyrolysis process has 2 regimes that can be seen from the increasing amount of bio oil yield and the significant increase in polar volume. FTIR and GC MS results show the dominant polar phase by carboxylic and phenol, in the polar phase dominant by alkene. For use as bio fuel, bio oil has a low TAN value total acid number in polar phase, and viscosity is close to commercial fuel."
2017
S67872
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurhayati Abdullah
"Interest in using biomass energy as an alternative to fossil fuels has advanced in recent years. This study aimed to assess the effects of torrefaction on the quality of pyrolysis products. Oil palm biomass, such as empty fruit bunches (EFB), mesocarp fiber (MF) and palm kernel shell (PKS) were either untreated (untorrefied) or torrefied (treated), and subsequently pyrolyzed. The experiment’s conditions for torrefaction were set to be a 220°C temperature, a 10°C/min heating rate, and 30 minutes holding time, and for pyrolysis they were set to a 650°C temperature, 20°C/min heating rate and 2 hours holding time. The nitrogen flow rate of 2L/min was maintained for both experiments. The results revealed that the torrefaction pretreatment improved the heating value of the torrefied biomass to 18–21 MJkg-1 from the previous value of 16–19 MJkg-1 for the untorrefied biomass. During torrefaction, the PKS showed a high solid yield of 95% due to high lignin content. The higher heating value (HHV) of the biochar and bio-oil derived from untorrefied and torrefied biomass were between 26–30 MJkg-1 and 16–17 MJkg-1 for the former, and 28–31 MJkg-1, and 17–20 MJkg-1 for the latter. The maximum HHV of 31.2 MJkg-1 was obtained from torrefied PKS biochar. The pyrolysis of torrefied biomass gave higher quality biochar and bio-oil compared to untorrefied biomass. The bio-oil acquired from the pyrolysis of the torrefied sample is less acidic and has a higher calorific value in comparison with the bio-oil obtained from the untorrefied sample. MF and PKS have demonstrated a superior outcome after torrefaction. In this way, the PKS and MF were identified as better biomass for torrefaction and pyrolysis compared to EFB."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:8 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Dijan Supramono
"Previous research of thermal co-pyrolysis of biomass-plastics where plastics function as hydrogen donor to induce synergistic effect on non-oxygenated fraction of bio-oil has reached a condition that there was a difficulty of separating non-oxygenated compounds from oxygenated compounds either at low heating rate. It was suspected that the content of high molecular weight of compounds especially polyaromatic hydrocarbons (PAH) in bio-oil retarded this separation. At low heating rate, most of co-pyrolysis until recently have been conducted in fixed bed and auger reactors. The present work proposed a stirred tank reactor as the reactor alternative to avoid formation of PAH in bio-oil. A series of experiments of co-pyrolysis of corn cobs and polypropylene at low heating rate (5oC/min) with maximum temperature of 500oC has been conducted with the ultimate goal of producing non-oxygenated fraction of bio-oil similar to diesel fuel. The qualities of the fraction targeted were its viscosity, double bond content and branching number of carbon chains. The values of these properties in diesel fuel are 2.7 cStokes, 0%, 0.4, respectively. The experiments involved 3 different reactors, i.e. the first, a stirred tank reactor with its aspect ratio (the ratio of the height to the diameter) of 2.0, the second, a stirred tank reactor with aspect ratio of 1.35 and the third, a dispecement reactor. Nitrogen gas as a sweeping gas was predicted to generate local turbulence favouring convective heat transfer. The work has resulted in some important results, i.e. the first, there was phase separation between oxygenated and non-oxygenated fractions, the second, synergistic effects in copyrolysis have been achieved both in bio-oil and non-oxygenated fraction yields, the third, non-oxygenated fraction had viscosity of 2.03 + 6.47% cStokes, the fourth, nonoxygenated fraction contained only 6-7% double bonds, which eases the hydrogenation reaction in further processing for double bond saturation, the fifth, non-oxygenated fraction had average branching number of 0.57, slightly above that of diesel fuel, which is unfavourable to reach short ignition delay time in the combustion, the sixth, the aspect ratio of the reactor significantly affected the extent of biomass pyrolysis, but not polypropylene pyrolysis."
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2582
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sitorus, Adythya Fernando
"ABSTRAK
Penelitian yang sudah dilakukan sebelumnya menunjukkan bahwa ada 2 regime reaksi co-pyrolysis yang memiliki perbedaan trend pada yield bio-oil-nya, yaitu regime dengan komposisi plastik dalam umpan reaktor kurang dari 40 regime 1 dan regime dengan komposisi plastik dalam umpan reaktor lebih dari 40 regime 2 .Penelitian yang dilakukan saat ini berhasil membuktikan bahwa hal tersebut merupakan pengaruh perpindahan panas bahan dalam reaktor. Perpindahan panas dipelajari dengan melihat suhu yang direkam oleh termokopel pada tujuh lokasi yang berbeda di dasar reaktor. Hasil yang didapatkan adalah pada regime 1, perpindahan panas terjadi dengan dominasi oleh radiasi ke biomassa, sedangkan pada regime 2 didominasi oleh konveksi ke plastik.Variasi komposisi pada regime 1 tidak berpengaruh kepada perubahan suhu dalam campuran sedangkan pada regime 2 menunjukkan semakin kecil komposisi biomassa maka semakin tinggi suhu campuran yang dicapai. Penelitian ini menunjukkan bahwa perpindahan panas belum terjadi dengan merata pada campuran sehingga pirolisis biomassa belum dapat mencapai pirolisis sekunder dengan baik sedangkan pirolisis plastik sudah menghasilkan distribusi produk yang merata.

ABSTRACT
The previous research shows that there are two regimes of co pyrolysis reaction which have different trend of bio oil rsquo s yield, they are the regime with plastic composition in reactor feed less than 40 regime 1 and regime with plastic composition in reactor feed more than 40 regime 2 .Current research has proved that it is the effect of heat transfer of materials in the reactor. The heat transfer was studied by looking at the temperature recorded by the thermocouple at seven different locations at the bottom of the reactor. The result is that in regime 1, heat transfer occurs dominanty by radiation to biomass, whereas in regime 2 it is dominated by convection to plastic.The variation of composition in regime 1 does not affect the temperature change in the mixture, while in regime 2 the smaller the composition of the biomass the higher the mixed temperature is achieved. This study shows that heat transfer has not occurred evenly on the mixture so that biomass pyrolysis has not been able to achieve the secondary pyrolysis well whereas plastic pyrolysis has produced an even distribution of the product."
2017
S67133
UI - Skripsi Membership  Universitas Indonesia Library
cover
Justin Edgar
"Co-pyrolysis antara bonggol jagung dengan plastik polipropilena dilakukan di dalam reaktor tangka berpengaduk menggunakan gas CO2 sebagai gas pembawa karena ketersediaannya yang melimpah dan harganya yang murah. Percobaan dilakukan pada berbagai komposisi bonggol jagung dan plastik polipropilena untuk memperhitungkan pengaruh komposisi pada yield dan kualitas minyak nabati yang dihasilkan. Laju alir gas yang digunakan adalah 750 mL/menit dan laju pemanasan sebesar 5°C/menit hingga suhu mencapai 500°C.
Hasil penelitian menunjukkan bahwa yield gas non-kondensibel dan char yang dihasilkan lebih banyak, sedangkan yield minyak nabati lebih sedikit dibandingkan saat gas N2 digunakan sebagai gas pembawa. Derajat percabangan molekul pada fraksi non-polar minyak nabati yang dihasilkan terbukti lebih besar dan kandungan aromatiknya lebih sedikit dibandingkan dengan bahan bakar komersial. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yolla Miranda
"Bonggol jagung merupakan limbah dengan jumlah yang cukup banyak di Indonesia. Sejauh ini pemanfaatan utama untuk biomassa. Namun biomassa tersebut masih mengalami kendala karena tingginya senyawa oksigenat yang menyebabkan heating value-nya rendah. Plastik polipropilena diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Pencampuran biomassa dan plastik akan menghasilkan efek sinergetik dalam memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Berbagai penelitian pada slow co-pyrolysis telah dilakukan terutama pada reaktor tubular dengan rasio tinggi terhadap diameter, lebih dari 4. Tetapi untuk skala besar, bentuk reaktor seperti ini sangat sulit dilakukan scale-up.
Pada penelitian ini reaktor dibuat dengan rasio kurang dari 2. Perpindahan panas khususnya pada plastik yang memiliki konduktivitas termal rendah dibantu dengan adanya pengaduk untuk memperbaiki persebaran perpindahan panas tersebut. Identifikasi pengaruh efek sinergetik dilakukan dengan menganalisis bio-oil menggunakan FTIR dan GC-MS. Efek sinergetik yield bio-oil terjadi pada komposisi PP terhadap bonggol jagung sebesar 50-87,5 dengan 87,5 sebagai yield tertinggi. Sementara efek sinergetik kualitas bio-oil yang berupa peningkatan senyawa non-oksigenat terjadi pada komposisi PP 37,5-87,5.

Corn cob is a waste which has considerable amount in Indonesia. So far, its utilization especially for biomass. However, biomass still having problems because the high oxygenate compound which causes low heating value. The pure polypropylene plastic has a H C ratio higher and poor in oxygen, so slow co pyrolysis of biomass with plastic can be used for bio oil upgrading solutions which is simple, effective and inexpensive. By mixing the two feedstocks, a synergetic effect would be created to improve the quantity and quality of the bio oil produced. Various studies on the slow co pyrolysis has been carried out mainly in the tubular reactor with a high ratio of the diameter, more than 4. But for large scale, that reactor design will be very difficult to scale up.
This research, reactor was made with a ratio less than 2. The heat transfer especially on the plastic that has a low thermal conductivity helped by stirrer to improve the distribution of heat transfer. Identification of the synergetic effect was done by analyzing bio oil using FTIR and GC MS. Synergetic effects of bio oil yield occurred in the composition of the PP towards corn cobs of 50 to 87.5 which 87.5 as the highest yield. While the synergetic effect of the quality in bio oil as an increase in the composition of the non oxygenate which exist in PP composition 37.5 to 87.5.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S62753
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fianna Utomo
"Bonggol jagung memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena banyaknya limbah pertanian jagung Indonesia. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Co-pyrolysis antara bonggol jagung-plastik polipropilena memiliki efek sinergetik yang mengubah sebagian fraksi polar dari bio-oil menjadi fraksi non-polar yang mengandung senyawa non-oksigenat sebagai bahan baku untuk sintesis biofuel. Pada percobaan ini, pirolisis dari fraksi non-polar dilakukan untuk memproduksi bio-oil yang memiliki karakteristik yang dekat dengan bensin. Pirolisis dilakukan pada dua tahapan, di mana tahap pertama adalah co-pyrolysis untuk memproduksi fraksi non-polar dan tahap kedua adalah untuk mempirolisis fraksi non-polar tersebut untuk menurunkan viskositasnya menjadi dekat dengan viskositas bensin. Kedua tahap pirolisis akan dilakukan dalam reaktor tabung berpengaduk pada suhu 100 RPM, heating rate 5°C/menit, dan laju alir nitrogen 750 mL/menit pada tekanan gas nitrogen 3 bar. Variasi yang dilakukan berupa suhu akhir pirolisis tahap kedua. Produk bio-oil dikarakterisasi menggunakan H-NMR, GC-MS, LC-MS, FTIR, dan viskometer. Yield dan viskositas bio-oil dari hasil pirolisis tahap kedua bergantung kepada suhu akhir pirolisis, di mana semakin tinggi suhu, yield akan semakin tinggi dan viskositas juga cenderung untuk semakin tinggi. Adapun bio-oil dengan suhu akhir pirolisis tahap kedua 300°C memiliki karakteristik yang paling dekat dengan bensin.

Corncobs biomass has a high potential to be developed into bio oil because of large amount of maize farm waste in Indonesia. In addition, plastic waste is also abundant in Indonesia, especially polypropylene. Co pyrolysis between corncobs and polypropylene has a synergetic effect that transforms some polar fraction of bio oil into non polar fraction containing non oxygenate compounds as precursor for synthesis of biofuel. In the present work, pyrolysis of the non polar fraction of bio oil was led to produce bio oil which had similar characteristics to that of gasoline. The pyrolysis was carried out in two stages, where the first stage was co pyrolysis to produce non polar bio oil and the second stage was pyrolysis of non polar fraction to reduce its viscosity similar to that of gasoline. The first and second stage pyrolysis was carried out in a stirred tank reactor at 100 RPM, heating rate of 5°C min and nitrogen flow rate of 750 mL min under 3 bar nitrogen gas pressure with the second stage pyrolysis final temperature varied. The resulting bio oil product was characterized by FT IR, GC MS, H NMR, viscometer and LC MS. Bio oil viscosity and yield of the second stage pyrolysis heavily depended on its final temperature, in which the higher the temperature, the higher was the viscosity, yet the higher was the bio oil yield. Bio oil with secondary pyrolysis final temperature of 300°C has the most similarities to gasoline characteristics. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Octaviany Magdalena
"Bioetanol dari biomassa limbah pertanian adalah generasi kedua dari bahan bakar alternatif selain biofuel dari bahan fosil dan baru-baru ini pengembangan produksi bioetanol secara luas dibahas melibatkan metode dan bahannya. Salah satu limbah biomassa potensial untuk produksi bioetanol adalah tongkol jagung, karena kandungan karbohidrat yang tinggi dan ketersediaannya yang melimpah. Tujuan utama dari penelitian ini adalah meningkatkan produksi bioetanol dari tongkol jagung menggunakan metode sakarifikasi dan fermentasi secara simultan dengan proses enzimatik hidrolisis menggunakan err,im selulase dan xilanase dari dua Actinomycetes Catenuloplarus indicus dan Streptomryes sp. potensial dan fermentasi menggunakan Saccharomyces Cereviceae NBRC 1440. Sakarifikasi tongkol jagung menggunakan kombinasi enzim dianalisis dengan kromatografi lapis tipis KLT. Data menunjukkan bahwa enzim yang dihasilkan dari actinomycetes memiliki kemampuan untuk memecah tongkol jagung menjadi monosakarida seperti glukosa dan xilosa. Data menunjukkan hasil analisis gula reduksi dari rentang 0-96 jam yaitu sebesar 3,47;3,59i 3,71; 4,03; 3,48 ppm. Untuk konsentrasi tertinggi pada waktu 72 jam yaitu 4,03 ppm, sedangkan gula total sebesar 24,60;23,13;24,96;20,95;20,62 ppm dan konsentrasi tertinggi pada titik 48 jam sebesar 24,96. Analisis lebih lanjut dari produksi bioetanol dilakukan dengan Kromatografi Cair Kinerja Tinggi KCKT menunjukkan bahwa ragi memiliki kemampuan untuk mengubah glukosa menjadi etanol. Bioeanol dari hidrolisis tongkol mencapai 1.017 g/L untuk proses SSF 48 jam. Dengan nilai untuk yield etanol yaitu sebesar 0,045 grarnl 20 tnL dan persentase konversi produksi etanol dari glukosa sebesar 58,11Yo.

Bioethanol from agriculture waste biomass is a second generation of alternative fuels beside fosil biofuels and recently development of bioethanol production is widely discussed involving methods and materials. One of potential waste biomass for bioethanol production is corn cobs because of its a high carbohydrate content and abundant availability. The main purpose of this research is enhancing bioethanol production from corn cobs by Simultaneous Saccharification and Fermentation method with enzymatic hydrolysis using cellulase and xylanase from two potential Actinomycetes Catenuloplanes indicus and Streptomyces sp. and fermentation using Saccharorryces cereviceae NBRC 1440. The saccharification of corn cobs using a combination of enzymes was analyzed using Thin Layer Chromatography tLC and the data showed that enzryme from actinomycetes has the ability to break down corn cobs into monosaccharides such as glucose and xylose. The data show the results of reducing sugar analysis findings om the range of 0 96 hours is equal to 3.47 3.59 3.71 4.03 3.48 ppm. The highest concentration of 72 hour is 4.03 ppm, while the total sugar amounted to 24.60 23.13 24.96 20.95 20.62 ppm and the highest concentation of at point 48 hours at24.96. Further analysis of bioethanol production is done by High Performance Liquid Chromatography IIPLC showed that yeast has the ability to convert glucose into ethanol. The Highest bioethanol from com cobs hydrolysisreaching 1,017 g L for the SSF process 48 hours. With the value for ethanol yield is 0.045 920 mL and percentage conversion of ethanol production from glucose is 58,llo o."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T46875
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>