Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123245 dokumen yang sesuai dengan query
cover
Muhammad Faizal
"Penelitian ini berfokus pada pengendalian sistem yang nonlinear berupa Rotary Inverted Pendulum (RIP) dengan menggunakan salah satu algoritma Reinforcement learning (RL) yaitu algoritma Deep Deterministic Policy Gradient (DDPG) yang disimulasikan pada simulink MATLAB. Algoritma DDPG merupakan algoritma lanjutan dari algoritma Deep Q-Network (DQN) yang dapat diaplikasikan pada sistem yang kontinu. RIP merupakan sistem nonlinier yang populer pada sistem kendali yang bersifat mekanis sehingga permasalahan RIP banyak dikerjakan oleh peneliti dalam bidang sistem kendali dengan berbagai metode pengendalian. Tujuan dari penelitian ini adalah untuk mengetahui hasil pengendalian dengan algoritma DDPG dan kemudian membandingkannya dengan metode pengendalian lain yang telah dikerjakan oleh peneliti lainnya. Pengendalian yang dilakukan pada penelitian ini yaitu keseimbangan pendulum ketika posisinya berdiri tegak.

This research focuses on controlling a nonlinear system Rotary Inverted Pendulum (RIP) using one of the Reinforcement Learning (RL) algorithms Deep Deterministic Policy Gradient (DDPG) algorithm which is simulated on simulink MATLAB. DDPG algorithm is an advanced algorithm from the Deep Q-Network (DQN) algorithm which can be applied to continuous systems. RIP is a nonlinear system that is popular in mechanical control systems so that many RIP problems are worked on by researchers in the field of control systems with various control methods. The purpose of this study is to determine the results of control with the DDPG algorithm and then compare it with other control methods that have been used by other researchers. The control carried out in this study is the balance of the pendulum when the posture is standing upright."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Fadilah Yuliandini
"Sistem Coupled tank umum digunakan pada bidang industri otomatis, salah satu pengendalian yang umum terjadi pada coupled tank adalah pengendalian ketinggian air. Sistem pengendalian tersebut bertujuan untuk menjaga ketinggian air yang berada pada tangki. Penelitian ini melakukan simulasi pengendalian ketinggian air pada coupled tank dengan menerapkan Reinforcement Learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG). Proses simulasi tersebut dilakukan menggunakan simulink pada MATLAB. Algoritma DDPG melalui serangkaian training sebelum diimplementasikan pada sistem coupled tank. Kemudian pengujian algoritma DDPG dilakukan dengan memvariasikan nilai set point dari ketinggian air dan sistem diberikan gangguan berupa bertambahnya flow in dari control valve lain. Performa dari algorima DDPG dalam sistem pengendalian dilihat dari beberapa parameter seperti overshoot, rise time, settling time, dan steady state error. Hasil yang diperoleh pada penelitian ini bahwa algoritma DDPG memperoleh nilai settling time terbesar sebesar 109 detik, nilai steady state error terbesar sebesar 0.067%. Algoritma DDPG juga mampu mengatasi gangguan dengan waktu terbesar sebesar 97 detik untuk membuat sistem kembali stabil.

The Coupled Tank system is commonly used in the field of industrial automation, and one of the common controls implemented in this system is water level control. The purpose of this study is to simulate water level control in a coupled tank using Reinforcement Learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm. The simulation process is performed using Simulink in MATLAB. The DDPG algorithm undergoes a series of training sessions before being implemented in the coupled tank system. Subsequently, the DDPG algorithm is tested by varying the set point values of the water level and introducing disturbances in the form of increased flow from another control valve. The performance of the DDPG algorithm in the control system is evaluated based on parameters such as overshoot, rise time, settling time, and steady-state error. The results obtained in this study show that the DDPG algorithm achieves a maximum settling time of 109 seconds and a maximum steady-state error of 0.067%. The DDPG algorithm is also capable of overcoming disturbances, with the longest recovery time of 97 seconds to restore system stability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sangat kecil dan mendekati 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in coupled tank systems in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be made using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is very small and close to 0%."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sama dengan 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in the coupled tank system in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be created using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is equal to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rayhan Ghifari Andika
"Pengendalian proses di industri desalinasi sangat penting untuk mengoptimalkan operasi dan mengurangi biaya produksi. Pengendali proporsional, integral, dan derivatif (PID) umum digunakan, namun tidak selalu efektif untuk sistem coupled-tank yang kompleks dan nonlinier. Penelitian ini mengeksplorasi penggunaan algoritma reinforcement learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG) untuk mengendalikan ketinggian air pada sistem coupled-tank. Tujuan penelitian ini adalah merancang sistem pengendalian ketinggian air menggunakan RL berbasis programmable logic controller (PLC) untuk mencapai kinerja optimal. Sistem diuji pada model coupled-tank dengan dua tangki terhubung vertikal, di mana aliran air diatur untuk menjaga ketinggian air dalam rentang yang diinginkan. Hasil menunjukkan bahwa pengendalian menggunakan RL berhasil dengan tingkat error steady-state (SSE) antara 4,63% hingga 9,6%. Kinerja RL lebih baik dibandingkan PID, dengan rise time dan settling time yang lebih singkat. Penelitian ini menyimpulkan bahwa RL adalah alternatif yang lebih adaptif untuk pengendalian level cairan di industri dibandingkan dengan metode konvensional.

Process control in the desalination industry is crucial for optimizing operations and reducing production costs. Proportional, integral, and derivative (PID) controllers are commonly used but are not always effective for complex and nonlinear coupled-tank systems. This study explores the use of reinforcement learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm to control the water level in a coupled-tank system. The objective of this research is to design a water level control system using RL based on a programmable logic controller (PLC) to achieve optimal performance. The system was tested on a coupled-tank model with two vertically connected tanks, where the water flow is regulated to maintain the water level within the desired range. Results show that control using RL achieved a steady-state error (SSE) between 4.63% and 9.6%. RL performance was superior to PID, with faster rise and settling times. This study concludes that RL is a more adaptive alternative for liquid level control in industrial settings compared to conventional methods."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deden Ari Ramdhani
"Sistem pengendalian temperatur campuran dan ketinggian air merupakan pengaplikasian yang umum ditemukan dalam bidang industri. Salah satu proses yang menggunakan sistem pengendalian tersebut adalah proses water thermal mixing. Proses tersebut bertujuan untuk menjaga nilai temperatur dan ketinggian air pada nilai yang diinginkan. Hal tersebut dapat diicapai dengan cara mengatur flow input air panas dan air dingin serta mengatur flow out dengan nilai konstan. Pada penelitian ini, diterapkan Reinforcement Learning (RL) dengan Deep Deterministic Policy Gradient (DDPG) Agent untuk melakukan simulasi proses tersebut pada Matlab dan Simulink. Proses training diperlukan untuk memberikan agent pengalaman dalam mengendalikan proses tersebut. Performa dari pengendali RL akan dilihat dari beberapa parameter seperti rise time, settling time, overshoot, dan steady-state error sebagai data kualitatif. Berdasarkan hasil pengendalian, didapatkan nilai overshoot dan steady-state error yang cukup kecil yaitu 1.3% dan 1.76%.

Mixture temperature and water level control systems are common applications in industrial field. One of the process that uses the control system is water thermal mixing process. The goal of the process is to maintain a temperature and water level at expected value. The goal can be achieved by adjusting the input flow of hot and cold water plus adjust flow out on a constant value. In this study, Reinforcement Learning (RL) with Deep Deterministic Policy Gradient (DDPG) agent was applied to simulate the process in Matlab and Simulink. The training process is needed to give agents experience in controlling the process. The performance of the RL controller will be seen from several parameters such as rise time, settling time, overshoot, and steady-state error as qualitative data. Based on the control results, the overshoot and steady-state error values are quite small, namely 1.3% and 1.76%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Zulkarnain S. Hi. Rauf
"Senjata genggam kelas pistol, shoutgun, dan rifle sering digunakan dalam kegiatan kriminal. Sering kali objek senjata-senjata tersebut yang terekam sulit terdeteksi pada keramaian, dikarenakan pengawasan masih dilakukan dengan mata telanjang. Proses deteksi senjata-senjata tersebut pada rekaman bisa dibantu dengan menggunakaan Deep Learning. Dalam hal ini penulis mengusulkan menggunakan Deep Learning untuk mendeteksi senjata dan menentukan jenis senjata api yang terdeteksi. Penelitian ini bertujuan untuk mengimplementasikan Deep Learning pada robot deteksi senjata api berenis handgun, rifle, dan shotgun. Algoritma Deep Learning yang digunakan yaitu YOLO dan EfficientDet. YOLO merupakan salah satu metode pendeteksian objek tercepat dan akurat, mengungguli algoritma pendeteksian lainnya. Namun, algoritma YOLO memerlukan arsitektur komputer yang berat. Oleh karena itu YOLOv3-tiny dan YOLOv4-tiny, versi YOLOv3 yang lebih ringan, dapat menjadi solusi untuk arsitektur yang lebih kecil. Penulis menggunakan 3 versi YOLO yaitu YOLOv3-tiny, YOLOv4-tiny, dan YOLOv7. YOLOv -tiny memiliki FPS tinggi, yang seharusnya akan menghasilkan kinerja lebih cepat. Karena YOLOv-tiny adalah versi modifikasi dari YOLO versi aslinya, maka akurasinya meningkat, dan YOLOv3 sudah mengungguli SSD dan R-CNN yang lebih cepat. Sedangkan YOLOv7 sebagai versi modifikasi terbaru dari YOLO diuji performanya lebih baik dari YOLO versi yang lainnya atau tidak. Selain itu penulis menggunakan algoritma pendeteksian lainnya yaitu EfficientDet untuk pengujian apakah YOLO mengungguli algoritma pendeteksian lainnya. Tujuan lain dari penelitian ini yaitu untuk mengetahui performa training model Deep Learning terbaik yang akan diimplementasikan pada robot deteksi senjata api yang telah dirancang. Robot yang dirancang menggunakan Single Board Computer (SBC) yaitu Raspberry Pi model 4B yang kemudian didesain hingga berbentuk robot mars rover. Studi ini menemukan bahwa model YOLOv4-tiny adalah model Deep Learning yang diaplikasikan ke robot karena hasil training model ini menggungguli dari pada hasil training model Deep Learning lainnya. Nilai parameter hasil training model YOLOv4-tiny antara lain yaitu: mAP 82%, F1 score 78%, dan Avg. loss 0.74. Dengan demikian, studi ini juga berhasil megimplementasikan Deep Learning berbasis YOLO pada robot deteksi senjata api dengan nilai confidence pendeteksian rata-rata 99%. serta berhasil mengklasifikasi kelas jenis senjata yang terdeteksi.

Pistol, shoutgun and rifle class handheld weapons are often used in criminal activities. Often the objects of these weapons that are recorded are difficult to detect in the crowd, because monitoring is still carried out with the naked eye. The process of detecting these weapons in recordings can be assisted by using Deep Learning. In this case the author proposes using Deep Learning to detect weapons and determine the type of firearm detected. This research aims to design a weapon detection and weapon type classification tool based on Deep Learning algorithms. The Deep Learning algorithms used are YOLO and EfficientDet. YOLO is one of the fastest and most accurate object detection methods, outperforming other detection algorithms. However, the YOLO algorithm requires heavy computer architecture. Therefore YOLOv3-tiny and YOLOv4-tiny, lighter versions of YOLOv3, can be a solution for smaller architectures. The author uses 3 versions of YOLO, namely YOLOv3-tiny, YOLOv4-tiny, and YOLOv7. YOLOv -tiny has a high FPS, which should result in faster performance. Because YOLOv-tiny is a modified version of the original YOLO, its accuracy is improved, and YOLOv3 already outperforms faster SSDs and R-CNN. Meanwhile, YOLOv7 as the latest modified version of YOLO is tested whether its performance is better than other versions of YOLO or not. Apart from that, the author uses another detection algorithm, namely EfficientDet, to test whether YOLO outperforms other detection algorithms. Another aim of this research is to determine the performance of the best training model that will be applied to the tool that has been designed. The tool designed using a Single Board Computer (SBC), namely the Raspberry Pi model 4B, was then designed to take the form of a Mars rover robot. This study found that the YOLOv4-tiny model is a Deep Learning model that is applied to robots because the training results of this model are superior to the training results of other Deep Learning models. The parameter values resulting from the YOLOv4-tiny model training include: mAP 82%, F1 score 78%, and Avg. loss 0.74. Thus, this study also succeeded in designing a weapon detection and weapon type classification tool based on a Deep Learning algorithm with an average detection confidence value of 99%. and succeeded in classifying the class of weapons detected."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Moons, Bert
"This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application, algorithmic, computer architecture, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.
Gives a wide overview of a series of effective solutions for energy efficient neural networks on battery constrained wearable devices;
Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy-applications, algorithms, hardware architectures, and circuits-supported by real silicon prototypes;
Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;
Supports the introduced theory and design concepts by four real silicon prototypes. The physical realizations implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts."
Switzerland: Springer Nature, 2019
e20508149
eBooks  Universitas Indonesia Library
cover
Diva Kartika Larasati
"Roket reusable menjadi solusi dari tingginya biaya peluncuran roket. Dengan adanya roket yang dapat digunakan kembali, produsen roket tidak harus membuat roket baru untuk tiap peluncuran. Namun dengan banyaknya aspek yang perlu dikendalikan dalam pendaratan roket, diperlukan pengendalian yang rumit dengan pengetahuan mendalam mengenai model roket untuk menghasilkan pendaratan roket yang baik. Pada penelitian ini diajukan pengendali dengan proses perancangan yang lebih sederhana menggunakan reinforcement learning dengan algoritma Deep Deterministic Policy Gradient (DDPG) dengan fokus perancangan pada pencarian fungsi reward. Hasil pengendalian kemudian dibandingkan dengan pengendali PID dan pengendali DDPG dari penelitian terdahulu.

Reusable rocket is the ultimate solution of high rocket launch cost. With rockets being reusable, companies don’t have to make new rockets for every flight. But controlling rocket landing is not easy. With so many aspects needed to be controlled, complicated control system and in-depth knowledge about each rocket models are inevitable. This research proposes a controller with simpler design method using reinforcement learning with Deep Deterministic Policy Gradient (DDPG) algorithm which focuses on reward shaping. The result is then compared with PID and DDPG controllers from previous research."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ziyad Ain Nur Rafif
"Sistem coupled-tank merupakan konfigurasi yang digunakan pada industri dalam hal pengendalian ketinggian air, biasanya dengan metode pengendalian proportional, integral, derivative (PID). Namun, metode lain seperti reinforcement learning (RL) juga bisa diterapkan. Metode RL dapat dikombinasikan dengan programmable logic controller (PLC) yang sering digunakan dalam proses industri. PLC mengontrol ketinggian air dengan membaca data dari water level transmitter dan mengatur bukaan control valve berdasarkan algoritma RL yang sudah dilatih untuk mencapai kontrol optimal. Algoritma RL yang digunakan adalah twin-delayed deep deterministic (TD3) policy gradient. Performa algoritma ini diukur menggunakan parameter seperti overshoot, rise time, settling time, dan steady-state error, lalu dibandingkan dengan pengendali PID konvensional. Hasil simulasi dan pengujian pada hardware menunjukkan bahwa algoritma RL menghasilkan overshoot sebesar 6.59% dan steady-state error sebesar 3.53%, di mana steady-state error ini terjadi karena sensor yang sensitif sehingga data ketinggian air tidak pernah terekam konstan dan stabil. Sebagai perbandingan, pengendali PID memiliki overshoot sekitar 23.38% dan steady-state error terkecil berkisar pada 7.15%, yang berarti pengendali RL sudah memiliki performa yang lebih baik dibandingkan pengendali PID.

Coupled-tank system is a configuration commonly used in industry, mainly for water level control with proportional, integral, and derivative (PID) control method. But, other methods like reinforcement learning (RL) can be implemented for this control problem. This RL method can be combined with programmable logic controller (PLC) which is often used in industry process. PLC will control water level by reading data from water level transmitter and controlling a control valve opening according to a trained RL algorithm to gain an optimal control. The RL algorithm used is twin-delayed deep deterministic (TD3) policy gradient. The algorithm’s performance will be measured by parameters such as overshoot, rise time, settling time, and steady-state error, and then compared with the conventional PID control method. According to the results from simulation and from the real hardware, the overshoot value that happens is only in the range of 6.59% with the smallest steady-state error value ranged around 3.53%, which happens due to the sensitive sensor so that water level data never recorded at a constant and stable state. For comparison, the PID control has an overshoot around 23.38% and smallest steady-state error around 7.15%, which means that the RL control method has a better performance than the PID control method."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>