Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 169510 dokumen yang sesuai dengan query
cover
Sherly Kasuma Warda Ningsih
"Penggunaan energi matahari untuk produksi hidrogen dari air dapat menjadi alternatif yang potensial untuk mengatasi masalah keberlanjutan pasokan energi dan pengurangan pencemaran lingkungan. Sistem tandem dyes sensitized solar cell-photoelectrocatalytic (DSSC-PEC) berpotensi dikembangkan menjadi salah satu perangkat pemanen sinar matahari untuk produksi hidrogen (Solar to hydrogen). Dalam sistem tandem tersebut bagian PEC sebagai tempat terjadinya reaksi pemecahan air, sedangkan bagian DSSC berfungsi sebagai salah satu penyedia tegangan insitu dan elektron aktif bagi sel PEC. Material TiO2 nanotube arrays (TNAs) merupakan material satu dimensi (1D) yang memiliki sifat fotokatalitik yang superior dan luas permukaan spesifik yang besar, serta channel 1D yang kondusif dalam transpor muatan. TNAs telah dipreparasi menggunakan metode two step anodization dengan meningkatkan potensial anodisasi tahap dua pada potensial sedang. Plat Ti digunakan sebagai working electrode dan stainless steel digunakan sebagai counter electrode. Elektrolit yang digunakan adalah etilen glikol yang mengandung 0,3% w/w NH4F dan 2% v/v H2O. Hasil anodisasi tahap satu dihilangkan dengan sonikasi dalam air distilasi selama 20 menit dan plat ini berperan sebagai template untuk anodisasi tahap dua. Hasil anodisasi yang diperoleh pada tahap dua dikalsinasi pada suhu 450° C selama 2 jam untuk merubah fasa amorf menjadi fasa kristalin. Band gap energy dari TNAs yang dipreparasi dengan metode two step yakni sekitar 3,07-3,31 eV. Morfologi permukaan TNAs yang dihasilkan berbentuk heksagonal (honey comb). Peningkatan potensial anodisasi pada tahap dua menghasilkan TNAs yang highly order dengan durasi pembentukan yang relatif lebih singkat dengan nilai regularity ratio (RR) optimum 0,92. Agar lebih responsif terhadap sinar tampak, TNAs dimodifikasi dengan BiOI (bismuth oxyiodide) dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) dengan bantuan ultrasonikasi dan pemanasan menggunakan pelarut air distilasi dan pelarut sorbitol. BiOI/TNAs hasil modifikasi responsif terhadap sinar tampak pada rentang 450-580 nm (redshift) dengan nilai band gap sekitar 1,90 eV-2,32. Morfologi permukaan BiOI/TNA yang dihasilkan yakni bentuk nanoplate, nanoflake, dan nanosheet dengan orientasi tegak lurus pada matriks TiO2 nanotubes. Modifikasi BiOI pada TNAs tidak mengubah fasa kristal anatase. Fotoanoda Graphene Oxide (GO)/TNAs dan reduced-Graphene Oxide (rGO)/TNAs dipreparasi menggunakan teknik drop casting dan teknik deposisi Cyclic Voltammetry (CV), berturut-turut. Modifikasi TNAs dengan material GO ini berhasil menggeser serapan pada sinar tampak (430 nm). Material GO atau rGO/TNAs ini dimodifikasi dengan BiOI untuk mendapatkan fotoanoda ternary yang memiliki respon fotoelektrokimia yang lebih tinggi. BiOI/TNAs dan ternary BiOI/GO/TNAs digunakan sebagai fotoanoda pada zona PEC. Sementara itu, pada bagian katoda PEC digunakan TNAs yang dimodifikasi dengan Pt yang dipreparasi dengan metode fotoreduksi, sebagai zona katalis untuk pembentukan hidrogen. Pengembangan bagian DSSC digunakan fotoanoda TNAs yang disensitasi dengan N719 dyes dan bagian katodanya digunakan kaca Fluorine-doped Tin Oxide (FTO) yang dilapisi dengan Pt. Efisiensi DSSC N719 dyes/TNAs optimum yang didapat sekitar 5,23%. Perangkat DSSC dan PEC ini diaplikasikan untuk produksi hidrogen menghasilkan persen solar to hydrogen (STH) sekitar 2,56%. Saat diaplikasikan untuk produksi hidrogen dan degradasi fenol secara simultan dengan persen solar to hydrogen (STH) turun menjadi 1,34%, namun mampu mendegradasi fenol hingga 73,74%. Dari hasil studi ini menunjukkan bahwa sistem DSSC-PEC dengan fotoanoda bagian PEC berupa BiOI/TNAs atau BiOI/rGO/TNAs memiliki potensi yang menjanjikan secara simultan untuk produksi hidrogen dan degradasi zat organik dalam air berkadar garam tinggi.

The solar energy utilization for hydrogen production from water can be a potential alternative to address the problem of sustainability of energy supply and reduction of environmental pollution. The tandem dyes-sensitized solar cell-photoelectrocatalytic (DSSC-PEC) system can potentially be developed into one of the solar harvesting devices for hydrogen production (Solar to hydrogen). In this tandem system, the PEC compartment acts as a site for the water-splitting reaction, while the DSSC part provides insitu voltage and active electrons for the PEC cell. TiO2 nanotube arrays (TNAs) are one-dimensional (1D) with a superior photocatalytic high surface area and one dimension channel conducive to charge transport. TNAs have been prepared using a two-step anodization method by increasing the second-step voltages at moderate voltage. The Ti foil and stainless steel were used as the working and counter electrodes, respectively. The ethylene glycol containing 0.3% w/w of NH4F and 2% v/v H2O was used as the electrolyte. The first anodization result was removed by the ultrasonication process in the distilled water for 20 min, and this foil acted as the template for the second step of anodization. The second anodization product was calcined at 450° C for 2 h to convert the amorphous phase into a crystalline phase. Increasing the second step potential for producing TNAs with a highly ordered structure can improve the PEC properties. The band gap energy of TNAs prepared with the two-step anodization method was 3.07-3.31 eV. The surface morphology of TNAs prepared by the two-step anodization method was hexagonal (honeycomb). The increasing voltage in the second anodization step reveals TNAs with high order and short-duration of TNAs production with a regularity ratio (RR) was 0.92. In order to extend absorption in the visible range, TNAs were modified with BiOI (bismuth oxy iodide) by Successive Ionic Layer Adsorption and Reaction (SILAR) with ultrasonication and heat-assisted by using deionized water and sorbitol solvent. Modified BiOI/TNAs were responsive to visible light in the 450-580 nm (redshift) range, with a band gap energy of 1.90 - 2.32 eV. The BiOI/TNAs morphology was nanoplate, nanoflake, and nanosheet perpendicular to TiO2 nanotube matrices. The modification of BiOI on TNAs did not change the anatase crystal phase. The photoanode of Graphene oxide (GO)/TNAs and reduced-Graphene Oxide (rGO)/TNAs were prepared by Drop Casting and Cyclic Voltammetry (CV) deposition, respectively. The TNAs were modified with GO material and succeeded in shifting the absorption in visible light (430 nm). The GO/TNAs and the rGO/TNAs were modified with BiOI to produce a ternary photoanode with a higher photoelectrochemical response. The BiOI/TNAs and BiOI/GO/TNAs ternaries were used as photoanodes in the PEC zone. Meanwhile, at the PEC cathode, TNAs modified with Pt prepared by the photoreduction method were used as catalyst zone for the hydrogen formation. The development of DSSC using TNAs photoanode that were sensitized with N719 dyes and for the cathode used Fluorine-doped Tin Oxide (FTO) glass modified with Pt. The optimum efficiency of DSSC was 5.23%. The DSSC and PEC devices were applied for hydrogen production to produce solar to hydrogen (STH) of around 2.56 %. When applied to hydrogen production and phenol degradation simultaneously, the percentage of solar to hydrogen (STH) decreased to 1.34% but degraded phenol up to 73.74%. The results of this study reveal that the DSSC-PEC system with PEC photoanodes in the form of BiOI/TNAs or BiOI/rGO/TNAs has a promising potential for simultaneous hydrogen production and degradation of organic substance in salty water.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Prita Amelia
"Amonia merupakan senyawa penting bagi kehidupan di bumi, diantaranya yaitu dalam bidang industri dan pertanian. Permintaan amonia diperkirakan akan meningkat setiap tahunnya. Secara konvensional, fiksasi industri dari N2 untuk menghasilkan NH3 dilakukan melalui proses Haber−Bosch yang membutuhkan kondisi suhu dan tekanan yang sangat ekstrim sehingga mengonsumsi energi dalam jumlah tinggi dan mengemisikan CO2 dalam jumlah yang sangat besar. Oleh karena itu, perlu mengembangkan teknologi alternatif untuk sintesis amonia dengan metode yang ramah lingkungan. Banyak penelitian yang mengembangkan konversi nitrogen menjadi amonia secara fotoelektrokimia dengan adanya material semikonduktor, namun efisiensi yang dihasilkan masih belum cukup baik, sehingga perlu untuk dikembangkan lebih lanjut. Pada penelitian ini dilakukan pengembangan sistem tandem Dye Sensitized Solar Cell-Photoelectrochemistry (DSSC-PEC) untuk konversi nitrogen menjadi amonia. Sel DSSC disusun menggunakan fotoanoda N719/TiO2NTs, elektrolit I-/I3-, dan katoda Pt/FTO. Efisiensi DSSC yang dihasilkan pada penelitian ini sebesar 1,49%. Sel PEC disusun menggunakan BiOBr/TiO2NTs yang disintesis dengan metode successive ionic layer adsorption and reaction (SILAR) sebagai katoda, tempat berlangsungnya reaksi konversi nitrogen menjadi amonia, dan Ti3+/TiO2NTs sebagai fotoanoda tempat berlangsungnya oksidasi air. Selain itu, pada penelitian ini juga dilakukan variasi ketika Ti3+/TiO2NTs digunakan sebagai fotoanoda dan BiOBr/TiO2NTs sebagai katoda beserta BiOBr/TiO2NTs sebagai fotoanoda dan katoda. Sistem tandem disusun dengan menghubungkan anoda PEC dengan katoda DSSC, serta katoda PEC dengan anoda DSSC menggunakan kawat tembaga. Kadar amonia yang dihasilkan dianalisis dengan menggunakan metode fenat. Pada penelitian ini diperoleh kadar amonia tertinggi dengan sistem yang menggunakan material BiOBr/TiO2NTs pada anoda dan katoda dengan kadar amonia yang dihasilkan sebesar 0,1272 µmol selama 6 jam, dengan persen solar to chemical conversion (SCC) sebesar 0,0021%.

Ammonia is an important compound for human’s life, including in industry and agriculture. The demand for ammonia is expected to increase every year. Conventionally, the industrial fixation of N2 to NH3 is carried out through the Haber−Bosch process which requires extreme conditions of temperature and pressure. This process consumes a high amount of energy and emits a very large amount of CO2. Therefore, it is necessary to develop alternative technologies for ammonia synthesis using environmentally friendly methods. Many studies have developed the photoelectrochemical conversion of nitrogen to ammonia in the presence of semiconductor materials, but the resulting efficiency is still not good enough, so it needs further development. In this research, the development of the tandem system of Dye Sensitized Solar Cell-Photoelectrochemistry (DSSC-PEC) was carried out for the conversion of nitrogen to ammonia. DSSC cells were prepared using N719/TiO2NTs photoanode, I-/I3- electrolyte, and Pt/FTO cathode. The DSSC efficiency produced in this research is 1.49%. PEC cells were prepared using BiOBr/TiO2NTs synthesized by the successive ionic layer adsorption and reaction (SILAR) method as the cathode, where the reaction of converting nitrogen into ammonia takes place, and Ti3+/TiO2NTs as the photoanode where water oxidation takes place. In addition, in this study we also did the various experiments when Ti3+/TiO2NTs were used as photoanode and BiOBr/TiO2NTs as cathode, as well as BiOBr/TiO2NTs as photoanode and cathode. The tandem system is arranged by connecting the PEC anode to the DSSC cathode and the PEC cathode to the DSSC anode using copper wire. The resulting ammonia levels were analyzed using the phenate method. In this study, the highest ammonia levels were obtained with a system using BiOBr/TiO2NTs material at the anode and cathode with the resulting ammonia of 0.1272 µmol for 6 hours, with an solar to chemical (SCC) value of 0.0021%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suharyadi
"Amonia merupakan senyawa kimia yang disintesis melalui proses Haber-Bosch yang dapat menghasilkan emisi gas CO2 dalam jumlah besar karena dilakukan pada suhu dan tekanan tinggi, sehingga diperlukan teknologi alternatif untuk mensintesis amonia dengan menggunakan energi yang lebih rendah dan ramah lingkungan. Pada penelitian ini dilakukan pengembangan sistem tandem Sel Surya Tersensitisasi Zat Warna Fotoelektrokimia (DSSC-PEC) untuk reaksi reduksi nitrogen (NRR) menjadi amonia. Sel PEC menggunakan TiO2NT/BiVO4 sebagai fotoanoda untuk oksidasi air yang disintesis dengan metode optimasi SILAR selama 20 siklus memberikan photocurrent sebesar 0,352 mA/cm2. Sebagai katoda tempat berlangsungnya reaksi reduksi nitrogen menjadi amonia, digunakan Ti3+/TiO2NT. Sistem PEC digabungkan dengan DSSC berbasis TiO2NT/N719 dengan efisiensi 1,13% sebagai penambah energi dalam reaksi. Menggunakan sistem ini dengan luas area elektroda masing-masing 3 cm2, amonia yang dihasilkan dianalisis dengan menggunakan metode fenat didapatkan sebesar 0,393 µmol dengan efisiensi Solar to Chemical Conversion (SCC) sebesar 0,003%.

Ammonia is a chemical compound that is synthesized through the Haber-Bosch process which can produce large amounts of CO2 gas emissions because it is carried out at high temperatures and pressures, so an alternative technology is needed to synthesize ammonia that uses less energy and is environmentally friendly. In this research, the development of a Dye-Sensitized Solar Cell Photoelectrochemical tandem system (DSSC-PEC) was carried out for the nitrogen reduction reaction (NRR) into ammonia. PEC cells using TiO2NT/BiVO4 as a photoanode for water oxidation synthesized by the SILAR optimization method for 20 cycles gave a photocurrent of 0.352 mA/cm2. As the cathode where the nitrogen reduction reaction to ammonia takes place, Ti3+/TiO2NT is used. The PEC system is coupled with a DSSC based on TiO2NT/N719 with an efficiency of 1.13% as an energy booster in the reaction. Using this system with an electrode area of 3 cm2, the ammonia produced was analyzed using the phenate method and obtained 0.393 µmol with a Solar to Chemical Conversion (SCC) efficiency of 0.003%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hedi Surahman
"Hidrogen merupakan sumber energi terbarukan dan ramah lingkungan yang sangat potensial untuk menggantikan bahan bakar fosil. Banyak metoda dapat digunakan untuk menghasilkan hidrogen. Pemecahan air secara fotoelektrokimia adalah salah satu metode yang sangat menjanjikan untuk mengkonversi sinar matahari menjadi energi kimia. Dalam penelitian ini, fotokatalis TiO2 nanotube arrays TNTAs tersensitasi CdS nanopartikel diinvestigasi sebagai elektroda dalam sel surya quantum dot sensitized solar cell, QDSSC yang digabung dengan sistem sel fotoelektrokimia PEC dan digunakan sebagai strategi baru untuk produksi hidrogen melalui proses pemecahan air.
Dalam risalah laporan disertasi ini disampaikan hasil investigasi terhadap sintesis, karakterisasi, dan aktivitas fotoelektrokatalisis elektroda TiO2 nanotube arrays TNTAs dan elektroda TNTAs tersensitasi CdS nanopartikel. Elektroda TNTAs disintesis dengan metode oksidasi elektrokimia plat titanium dalam larutan etilen glikol. Pengaruh konsentrasi elektrolit, potensial anodisasi, waktu anodisasi, jarak antar elektroda, dan suhu kalsinasi diinvestigasi dalam pekerjaan ini, dengan tujuan untuk memperoleh struktur tubular yang seragam dan rapat sehingga dapat meningkatkan sifat fotokatalitik material TiO2. Sensitizer CdS nanopartikel dideposisikan pada permukaan TNTAs dengan metode succesive ionic layer adsorption and reaction SILAR yang dibantu dengan ultrasonikasi. Pengujian sistem sel gabungan QDSSC-PEC untuk produksi hidrogen dilakukan dengan memvariasikan kondisi percobaan yaitu variasi zona katalisis katoda, variasi konsentrasi hole scavenger dan variasi intensitas cahaya.
Hasil karakterisasi memperlihatkan diameter dalam TNTAs meningkat dari 15 nm sampai dengan 80 nm dengan meningkatnya potensial anodisasi dari 15 V sampai dengan 60 V. sementara panjang tabung meningkat dari 2 m menjadi 7,6 m dengan meningkatnya waktu anodisasi dari 15 menit sampai dengan 120 menit pada potensial anodisasi 40 V. Elekroda yang dipreparasi pada kondisi 40 V selama 45 menit dalam elektrolit etilen glikol yang mengandung 0,3 NH4F dan 2 H2O; jarak antar elektroda 1,5 cm; suhu kalsinasi 4500C memperlihatkan struktur tabung yang rapat dan seragam dan mempunyai aktivitas fotokatalisis terbaik dengan efisiensi fotokonversi sebesar 16 dibawah penyinaran sinar UV. Data XPS TNTAs yang disensitasi CdS nanopartikel memperlihatkan komposisi kimia dan chemical state fotokatalis sebagai struktur CdS/TiO2.
Hasil pengukuran SEM elektroda CdS/TNTAs yang disintesis menggunakan metode SILAR-ultrasonikasi memperlihatkan CdS tersebar merata di permukaan mulut tabung, bagian dalam dan luar tabung. Dari hasil pengamatan TEM diperoleh ukuran CdS nanopartikel sebesar 6-10 nm. Kurva DRS memperlihatkan nilai band gap sekitar 2,28-2,32 eV yang mengindikasikan keberadaan partikel CdS pada elektroda CdS/TNTAs. Efisiensi fotokonversi CdS/TNTAs dibawah penyinaran sinar tampak sebesar 12,03 , 5 kali lebih besar dibandingkan elektroda TNTAs murni.Hasil pengujian sistem sel gabungan QDSSC-PEC memperlihatkan pembentukan gelembung udara sebagai hidrogen pada katoda dan oksigen pada anoda.
Hasil pengukuran kromatografi gas menunjukkan munculnya puncak kromatogram gas hidrogen dan oksigen . Jumlah gas hidrogen yang dihasilkan sangat ditentukan oleh kondisi percobaan yang dilakukan. Kondisi percobaan optimum diperoleh dengan menggunakan katoda Pt/Ti, konsentrasi hole scavenger metanol 20 dan intensitas cahaya 160 mW/cm2. Laju pembentukan gas hidrogen yang terbentuk pada kondisi optimum sebesar 13,44 L/men. Efisiensi energi sel untuk produksi hidrogen melalui proses pemecahan air sebesar 4,78. Dari hasil ini dapat disimpulkan bahwa sel QDSSC-PEC mempunyai potensi yang menjanjikan sebagai strategi baru dalam menghasilkan hidrogen melalui proses pemecahan air secara artificial fotosintesis.

Solar hydrogen is a potential renewable energy source and environmentally friendly to replace fossil fuel. Many methods can be used to generate hydrogen. Photoelectrochemical water splitting is one of the most promising methods for convert of solar to chemical energy. In this study, CdS nanoparticles sensitized TiO2 nanotube arrays CdS TNTAs was investigated for use as an electrodes in solar cell systems quantum dot sensitized solar cell, QDSSC which combined with photoelectrochemical cell QDSSC PEC and used as a new strategy for the production of hydrogen through water splitting process.
In this dissertation report, we investigated the results of synthesis, characterization and photoelectrochemical activity of TNTAs and CdS TNTAs electrodes. The effect of electrolyte concentration, anodization potential, anodization time, the distance between the electrodes, and the calcination temperature were investigated in this work, with the aim to obtain a high ordered nanotubular structure and have a good photocatalytic activity. The sensitizer of CdS nanoparticles was deposited on the TNTAs surface by successive ionic layer adsorption and reaction SILAR method assisted with ultrasonication technique. The testing of QDSSC PEC cells for hydrogen production is done by varying the experimental conditions that variations of catalysis zone cathode , variation of hole scavenger concentration and light intensity variations.
The characterization results showed that the pore diameter of TNTAs increase from 15 nm to 80 nm with increasing anodization potential from 15 to 60 V, while the tube length increase from 2 m to 7.6 m with increasing anodization time from 15 to 120 minutes at 40 V of anodization potential. The TNTAs electrode was prepared at 40V and 45 minutes in the electrolyte of ethylene glycol containing 0.3 NH4F and 2 H2O the distance between the electrodes of 1.5 cm calcinations temperature at 4500C shows a well ordered nanotubular structures with the inner tube diameter was about 80 nm, the tube length was about 5.7 m and have the best photocatalytic activity with the photoconversion efficiency of 16 under UV light illumination.
The FE SEM results of CdS TNTAs electrode shows that CdS nanoparticles uniformly decorated on the top surface , inner wall and outer wall TNTAs without clogging at the nanotube mouth. The XPS spectra of CdS sensitized TNTAS electrode shows the chemical composition and chemical state as the CdS and TiO2 structure. The TEM image of the CdS TNTAs shows that CdS nanoparticles were abundantly deposited inside the TNTAs and a crystalline CdS nanoparticles was grown on an anatase TiO2 with particle size of 6 nm. The DRS curve shows the band gap value of about 2.28 to 2.32 eV, indicating the presence of CdS nanoparticles on the CdS TNTAs electrode. The energy photoconversion efficiency of CdS TNTAs was 12.03 under visible light illumination, which five times higher than that of a pure TNTAs electrode. The evaluating results of QDSSC PEC cell showed the formation of air bubbles as hydrogen gas at the cathode and oxygen gas at anode surface.
The measurement results of gas chromatography showed the chromatogram peaks of hydrogen and oxygen. The amount of hydrogen gas produced is determined by the experimental conditions conducted. The optimum experimental conditions obtained using Pt Ti cathode, 20 of methanol concentration as hole scavenger and light intensity of 160 mW cm2. The formation rate of hydrogen gas at optimum condition is 13.44 L men. The energy efficiency of cell for hydrogen production from water splitting process is 4.78. This results indicates that the QDSSC PEC cell have promising potential as a new strategy to generate hydrogen, which one may call an artificial photosynthetic water splitting process.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
D2345
UI - Disertasi Membership  Universitas Indonesia Library
cover
Karima Ayu Lestari
"Kosensitisasi merupakan salah satu cara yang dapat digunakan untuk meningkatkan performa dari dye-sensitized solar cell (DSSC). Kosensitisasi dilakukan dengan menggunaan dua atau lebih zat warna dengan spektrum serapan cahaya tampak yang saling komplementer seperti antosianin yang berwarna biru keunguan dengan brazilin yang berwarna jingga. Pada penelitian ini, performa DSSC yang mendapat perlakuan kosensitisasi dari campuran ekstrak kasar Caesalpinia sappan L. dan Clitoria ternatea dibandingkan dengan monosensitasi masing-masing ekstraknya. Dibuat beberapa variasi perbandingan volume pada campuran yang akan digunakan. Variasi terhadap kondisi pH zat warna juga dilakukan guna memperlebar respon spektral terhadap cahaya tampak. Dilakukan pula evaluasi terhadap stabilitas dari DSSC yang disintesis. Hasil pengukuran campuran ekstrak dengan spektrofotometer UV-Visiblemenunjukkan absorbansi gabungan dari kedua ekstrak penyusunnya. Efisiensi DSSC yang menggunakan fotoanoda terkosensitisasi antosianin dan brazilin menunjukkan angka yang lebih tinggi dibandingkan dengan fotoanoda termonosensitasi. Efisiensi terbaik diperoleh dengan menggunakan fotoanoda terkosensitisasi alkaline CT:CsL 1:2v/v dengan nilai 0,287584%. Evaluasi terhadap stabilitas fotoanoda dilakukan dengan menyinari DSSC selama 1, 3, dan 5 jam. Stabilitas terbaik ditunjukkan oleh DSSC dengan fotoanoda terkosensitisasi CT:CsL 1:1v/v.

Co-sensitization is one way that can be used to improve the performance of dye-sensitized solar cells (DSSC). Co-sensitization is done by using two or more dyes with complementary visible light absorption spectrum, e.g., the purplish-blue coloring anthocyanin and the orange coloring brazilin. In this study, performance of the cosensitize treated DSSC from Caesalpinia sappan L. and Clitoria ternatea crude extract mixture was compared with the mono sensitize of each extract. A number of mixture volume ratio variations were made. Variations of the dye pH condition was also used in order to widen the spectral response toward visible light. A stability evaluation of the synthesized DSCC was also carried out. The UV-Visible spectrophotometer measurement of extracted mixture shows combined absorbance of the two constituent extracts. The co-sensitized DSSC efficiency with anthocyanin and brazilin show higher value compared to the mono sensitized photoanode. The highest efficiency was obtained by using alkalineCT:CsL 1:2v/v co-sensitized photoanode  with value of 0.287584%. Evaluation toward the photoanode stability was carried out by irradiating the DSSC for 1, 3, and 5 hours. The optimum stability was exhibited by DSCC with CT:CsL 1:1v/v co-sensitized photoanode."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ervina Dwi Inggarwati
"Kebutuhan bahan bakar fosil yang meningkat mengakibatkan ketersediaan bahan bakar fosil semakin menipis, sehingga sumber energi berbasis fosil memiliki harga yang tinggi. Oleh karena itu, dibutuhkan energi alternatif yang mampu untuk mengganti energi fosil menjadi energi yang dapat diperbarui dengan memanfaatkan cahaya matahari. Produksi hidrogen merupakan salah satu cara memanfaatkan kelebihan energi terbarukan. Salah satu usaha untuk meningkatkan produksi hidrogen (H2) pada suatu material semikonduktor sulfida logam adalah menghambat laju rekombinasi suatu material dan membuat sistem tandem dyes sensitized solar cell dengan photoelectrochemical cell (DSSC-PEC). Dalam penelitian ini dilakukan pengembangan sistem tandem DSSC-PEC untuk produksi H2. Katoda PEC berfungsi sebagai zona katalisis produksi hidrogen menggunakan Pt/TiO2NTAs, dan fotoanoda berfungsi sebagai oksidasi air menggunakan TiO2NTAs/Bi2S3 yang disintesis dengan mentode SILAR dengan berbagai variasi perbandingan komposisi dan variasi siklus. Sedangkan katoda DSSC menggunakan elektrolit I-/I3-, dan Pt/FTO, dan anoda menggunakan TiO2NTAs/N719. Semua material tersebut dikarakterisasi dengan MPA, UV-VIS DRS, XRD, dan SEM.
Hasil penelitian menunjukkan bahwa fotoanoda dengan variasi perbandingan komposisi (1:1) pada siklus 2 menghasilkan respon arus terhadap cahaya yang paling optimum. Material ini memiliki respon terhadap sinar tampak, dengan energi celah pita sebesar 2,95 eV. Hal ini menunjukkan bahwa material fotoanoda tersebut memilki performa fotokatalitik yang lebih bagus jika dibandingkan dengan material tunggal TiO2NTAs, dan Bi2S3. Hasil difraktogram material TiO2NTAs/Bi2S3 memiliki kesesuaian dengan standar ICDD 01-074-9438 menghasilkan puncak difraksi pada 2Θ ( ͦ) 25, 28, 31, 35, 38, 40, 46, 48, 54, 55, 63, 70, dan 76 merupakan campuran dari TiO2 anatase, logam Ti, dan Bi2S3. Dari gambar SEM yang dihasilkan dengan metode sonikasi menunjukkan terjadinya bongkahan-bongkahan pada bentuk nanotubenya. Sedangkan dalam sistem tandem sel yang telah dikembangkan menghasilkan efisiensi Solar Cell sebesar 1,38 %. Dengan jumlah hidrogen yang dihasilkan pada kondisi penyinaran selama 6 jam sebesar 0,02318 %. Sedangkan tanpa adanya penyinaran hidrogen yang dihasilkan sebesar 0,000651%. Hal ini menunjukkan bahwa dengan adanya penyinaran mampu menghasilkan hidrogen lebih banyak dibandingkan dengan tanpa adanya penyinaran.

The increasing need for fossil fuels has resulted in the availability of fossil fuels being depleted, so fossil-based energy sources have a high price. Therefore, alternative energy is needed that can replace fossil energy with renewable energy by utilizing sunlight. Hydrogen production is one way to take advantage of the advantages of renewable energy. One effort to increase the production of hydrogen (H2) in a metal sulfide semiconductor material is to inhibit the recombination rate of a material and create a tandem dye-sensitized solar cell system with a photoelectrochemical cell (DSSC-PEC). In this research, a tandem DSSC-PEC system was developed to produce H2. PEC cathode functions as a catalytic zone for hydrogen production using Pt/TiO2NTAs, and photoanode functions as water oxidation using TiO2NTAs/Bi2S3 synthesized by the SILAR method with various composition ratios and cycle variations. While the cathode of DSSC uses electrolytes I-/I3-, and Pt/FTO, and the anode uses TiO2NTAs/N719. All these materials were characterized by MPA, UV-VIS DRS, XRD, and SEM.
The results showed that photoanodes with varying composition ratios (1:1) in cycle 2 produced the most optimum current response to light. This material has a response to visible light, with a band gap energy of 2.95 eV. This shows that the photoanode material has a better photocatalytic performance when compared to the single materials TiO2NTas and Bi2S3. The results of the diffractogram of the TiO2NTAs/Bi2S3 material conforming to the ICDD standard 01-074-9438 producing diffraction peaks at 2Θ ( ͦ) 25, 28, 31, 35, 38, 40, 46, 48, 54, 55, 63, 70, and 76 is a mixture of TiO2 anatase, metal Ti, and Bi2S3. From the SEM image generated by the sonication method, it shows the occurrence of lumps in the shape of the nanotubes. Meanwhile, in the tandem cell system that has been developed, the efficiency of Solar Cell is 1.38%. With the amount of hydrogen produced under irradiation for 6 hours of 0.02318 %. Meanwhile, in the absence of irradiation, the resulting hydrogen is 0.000651%. This shows that the presence of irradiation is able to produce more hydrogen than without irradiation.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Putri Safa Izhara
"Peningkatan populasi dan standar hidup manusia memicu kebutuhan akan energi sebagai bahan bakar. Pada zaman ini penggunaan bahan bakar fosil telah mencapai 85% menyebabkan peningkatan pada pemanasan global dan emisi gas rumah kaca yang berdampak buruk terhadap perubahan iklim dan atmosfer bumi. Energi terbarukan merupakan inovasi yang krusial untuk menangani masalah tersebut. Energi hidrogen merupakan salah satu bentuk energi terbaharukan, memiliki keunggulan karena bersih dan ketersediaannya yang melimpah di alam. Karena keunggulannya hidrogen berpotensi untuk menggantikan bahan bakar fosil serta kemampuan hidrogen dalam menghasilkan energi dengan nol emisi karbon menjadi perhatian masyarakat. Salah satu metode untuk memproduksi hidrogen dengan metode elektrokimia untuk pemecahan air. Untuk meningkatkan kinerja katalis pada proses elektrokimia menggunakan logam mulia. Meskipun logam mulia memiliki stabilitas dan kinerja katalis yang baik terdapat keterbatasan ketersediannya dan biayanya yang tinggi. Sebagai alternatif, dapat digunakan transition metal dichalcogennides (TMDCs) seperti MoS!. Dari permasalahan ini kami telah berhasil melakukan penelitian untuk menumbuhkan MoS! diatas kain karbon dengan metode hidrotermal selama 8 jam dengan suhu 200°C. MoS! diberi perlakuan annealing dengan suhu 200°C selama 1 jam untuk meningkatkan performa katalis pada proses elektrokimia. Perfoma katalis dapat dibuktikan dengan tegangan onset yang rendah dari linear sweep voltammetry (LSV). MoS! yang diberi perlakuan annealing menghasilkan tegangan onset 128 mV yang rendah dibandingkan dengan MoS! yang memiliki tegangan onset 178 mV. Hal ini juga didukung dengan hasil fasa 2H MoS! yang terbentuk dari MoS!/CC-200.

The increase in population and human living standards has led to a growing demand for mau as fuel. In this era, the use of fossil fuels has reached 85%, causing an increase in global warming and greenhouse gas emissions that adversely affect climate change and the Earths atmosphere. Renewable energy is a crucial innovation to address these issues. Hydrogen mau is one form of renewable mau, with the advantage of being clean and abundantly available in nature. Due to its benefits, hydrogen has the potential to replace fossil fuels, and its ability to produce mau with zero carbon emissions has garnered attention from the public.One method for hydrogen production is through electrochemical water splitting. To enhance the catalysts performance in the electrochemical process, noble metals are commonly used. However, the limited availability and high cost of noble metals pose constraints. As an alternative, transition metal dichalcogenides (TMDCs) like MoS! can be employed. To address these challenges, we conducted research to grow MoS! on carbon cloth through a hydrothermal method for 8 hours at a temperature of 200°C. Subsequently, the MoS!!underwent annealing at 200°C for 1 hour to improve the catalysts performance in the electrochemical process.The catalysts performance was assessed by measuring the onset voltage using linear sweep voltammetry (LSV). MoS! treated with annealing exhibited a low onset voltage of 128 mV, compared to untreated MoS!with an onset voltage of 178 mV. This improvement is further supported by the formation of the 2H phase in MoS!/CC-200. The study demonstrates the potential of treated MoS! as an effective catalyst for electrochemical processes, offering a promising avenue for sustainable and cost-effective hydrogen production."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Permata Puspita Dewi
"Pada penelitian ini dilakukan sintesis nanokomposit NiFe2O4 mesopori dengan MWCNT sebagai elektrokatalis dalam reaksi evolusi hidrogen. Berdasarkan hasil karakterisasi FTIR, XRD, Raman, TEM, SEM, dan BET menunjukkan NiFe2O4 mesopori, MWCNT, dan NiFe2O4 mesopori/MWCNT telah berhasil disintesis. Material-material hasil sintesis ini kemudian didepositkan pada permukaan elektroda glassy carbon (GCE) dan perilaku elektrokimianya diuji dengan teknik LSV, ECSA, EIS dan kronoamperometri. Pengujian menggunakan teknik LSV menunjukkan bahwa nilai onset potensial, overpotensial, dan tafel slope GCE/NiFe2O4 mesopori/MWCNT lebih kecil di bandingkan GCE/NiFe2O4 mesopori dan GCE/MWCNT. Hasil ini berkolerasi dengan uji ECSA yang menunjukkan bahwa GCE/NiFe2O4 mesopori/MWCNT memiliki luas permukaan yang paling tinggi sebesar 38,75 cm2.  Sedangkan pengujian dengan teknik EIS menunjukkan bahwa nilai hambatan transfer muatan (R

In this research, the synthesis of mesoporous NiFe2O4 nanocomposites was carried out using MWCNT as an electrocatalyst in the hydrogen evolution reaction. Based on the results of FTIR, XRD, Raman, TEM, SEM, and BET characterization, it was shown that mesoporous NiFe2O4, MWCNT, and mesoporous NiFe2O4/MWCNT had been successfully synthesized. The synthesized materials were then deposited on the surface of glassy carbon (GCE) electrodes. Their electrochemical behavior was tested using LSV, ECSA, EIS and chronoamperometric techniques. Tests using the LSV technique showed that the values of onset potential, overpotential, and tafel slope GCE/mesoporous NiFe2O4/MWCNT were smaller than GCE/ mesoporous NiFe2O2 and GCE/MWCNT. These results correlate with the ECSA test, which shows that GCE/mesoporous NiFe2O4/MWCNT has the highest surface area of 38.75 cm2. Meanwhile, the EIS technique showed that the smallest charge transfer resistance (Rct) was 2.39 kΩ. A stability test using the chronoamperometric method showed that GCE/mesoporous NiFe2O4/MWCNT had good stability after 21,600 seconds of chronoamperometry."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Abdullah Muiz
"Energi hidrogen dianggap menjadi salah satu sumber energi yang menjanjikan. Bahan bakar hidrogen memiliki banyak kelebihan seperti kapasitas penyimpanan, efisiensi, pembaruan, kebersihan, emisi nol, dan sumber menjadikannya pilihan yang sangat baik sebagai pasokan energi untuk panas dan listrik. Dengan menggunakan teknik alkaline water electrolysis untuk mengubah air menjadi hidrogen dan oksigen. Nanokomposit MoS2/CuO menjadi elektrokatalis yang meningkatkan nilai konduktifitas dan nilai aktivitas yang tinggi untuk reaksi evolusi hidrogen (HER). Pada penelitian ini dilakukan sintesis MoS2/CuO dan dianalisis dengan karakterisasi TEM, SEM, XRD, dan spektroskopi raman. Didapatkan hasil dari karakterisasi masing-masing senyawa prekursor dan komposit berhasil disintesis. Fabrikasi elektroda MoS2/CuO dilakukan dengan elektroda GCE/MoS2 dan GCE/MoS2/CuO untuk diuji aktivitas elektrokatalitik menggunakan LSV diperoleh nilai onset potential, overpotential dan tafel slope GCE/MoS2/CuO memiliki nilai yang mendekati Pt. Kemudian dilakukan uji EIS dan diperoleh nilai hambatan GCE/MoS2/CuO sebesar 483 Ω. Kemudian dilakukan uji CV untuk memperoleh nilai ECSA diperoleh nilai paling tinggi adalah GCE/MoS2/CuO. GCE/MoS2/CuO juga memiliki kestabilan yang baik dengan melakukan uji kronoamperometri selama 9000 detik.

Hydrogen energy is considered a promising energy source, offering advantages such as storage capacity, efficiency, renewability, cleanliness, zero emissions, and versatility, making it an excellent choice for heat and electricity supply. Alkaline water electrolysis is utilized to convert water into hydrogen and oxygen. A nanocomposite of MoS2/CuO serves as an electrocatalyst, enhancing conductivity and exhibiting high activity for the hydrogen evolution reaction (HER). In this research, MoS2/CuO synthesis was conducted and analyzed through TEM, SEM, XRD, and Raman spectroscopy characterizations. Successful synthesis results were obtained for the precursor and composite compounds. MoS2/CuO electrode fabrication involved GCE/MoS2 and GCE/MoS2/CuO electrodes, and their electrocatalytic activity was tested using LSV. The GCE/MoS2/CuO exhibited onset potential, overpotential, and tafel slope values close to Pt. EIS testing revealed a resistance value of 483 Ω for GCE/MoS2/CuO. CV testing was performed to determine ECSA, with GCE/MoS2/CuO achieving the highest value. Additionally, GCE/MoS2/CuO demonstrated good stability during chronoamperometry testing over 9000 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Wibawa Putra
"Bahan bakar hidrogen sebagai energi terbarukan berpotensi untuk dimanfaatkan sebagai sumber energi baru dan menggantikan bahan bakar fosil karena menghasilkan emisi rendah dan tidak berdampak negatif terhadap lingkungan. Produksi hidrogen dapat dilakukan dengan reaksi pemisahan air. Dalam penelitian ini, akan diamati reaksi pemisahan air pada sistem Sel Fotoelektrokimia Tersensitasi Zat Warna (DSPEC) menggunakan nanopartikel TiO2 untuk menghasilkan hidrogen 2H+ + 2e− → H2 (0,198 V NHE pada pH 7). Film FTO/TiO2 dipreparasi dan dikarakterisasi dengan XRD dan SEM. Pewarna komersial D102 dan D131 serta pewarna Rumbipy (kompleks) digunakan sebagai zat warna tersensitasi yang akan dibandingkan dalam elektroda kerja FTO/TiO2/pewarna; faktor-faktor seperti waktu loading zat warna, hole mobility (h+), dan adanya EDTA sebagai agen sacrificial akan diinvestigasi. Produksi hidrogen optimal diperoleh pada waktu loading 3 jam untuk D102 dan Rumbipy, sementara 2 jam untuk D131, hole mobility D102, D131, dan Rumbipy masing-masing adalah 6.42, 5.25, dan 11.01 (10-10 cm2s-1). Percobaan menghasilkan produksi hidrogen dalam sistem dengan adanyaEDTA sebagai berikut, Rumbipy > D102 > D131 dengan mol hidrogen terbesar mencapai 226,4 μmol dengan efisiensi faradaic 98,88% pada zat warna Rumbipy. Sedangkan dalam sistem tanpa adanya EDTA produksi hidrogen menghasilkan D131 > D102 > Rumbipy dengan mol hidrogen terbesar hanya mencapai 0,353 μmol dengan efisiensi faradaic 2,537% pada zat warna D131, selama waktu pengukuran 550 detik dengan iradiasi 100 mWcm-2.
Hydrogen fuel as renewable energy has a potency to be utilized as new energy sources and replace fossil fuels cause it resulted low emission and having no negative impact to the environment. Hydrogen production can be carried out by water splitting. In this study, we will observe the reaction of water splitting on Dye-Sensitizer Photoelectrochemical Cell (DSPEC) system using TiO2 nanoparticles to produce hydrogen 2H+ + 2e− → H2 (0,198 V NHE in pH 7). FTO/TiO2 film was prepared and characterized by XRD and SEM. Commercial dyes D102 and D131 are used as well as Rumbipy (complex) dyes as dye sensitizer which will compared in working electrode FTO/TiO2/dyes; factors such as dye loading time, hole mobility, and with or without EDTA as sacrificial agent were studied. The optimal hydrogen production was achieved at 3 hours dye loading time for D102 and Rumbipy dyes, while 2 hours for D131 dyes, hole mobility of D102, D131, and Rumbipy dyes was 6.42, 5.25, and 11.01 (10-10 cm2s-1) respectively. The experiment resulted hydrogen production in the system with the presence of EDTA as follow Rumbipy > D102 > D131 with the largest mol hydrogen reached 226.4 μmol with faradaic efficiency 98.88% in Rumbipy dyes. Whereas in the system without EDTA the hydrogen production resulted D131 > D102 > Rumbipy with the largest mol hydrogen only reached 0.35 μmol with faradaic efficiency 2.54% in D131 dyes, during measurements time 550 seconds with irradiation 100 mW cm-2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>