Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 169539 dokumen yang sesuai dengan query
cover
Muhammad Azis Husein
"Penolakan kandidat ketika mendaftar pekerjaan merupakan hal yang lumrah terjadi. Penolakan yang seringkali tidak disertai dengan alasan, menyebabkan pelamar tidak mengetahui letak kesalahan pada CV mereka. Aplikasi Reviewin dibangun dengan fitur utama yaitu memberikan jasa reviu CV dari alumni dan mahasiswa Universitas Indonesia (UI) yang berpengalaman untuk alumni dan mahasiswa UI yang membutuhkan. Tugas akhir ini disusun berdasarkan aktivitas requirement gathering, pengembangan aplikasi web, dan evaluasi terhadap aplikasi Reviewin. Fitur-fitur utama seperti mereviu CV, mengirim permintaan reviu CV, mencari reviewer, dan mengedit profil, sudah tersedia di reviewin.me. Berdasarkan hasil evaluasi, fitur-fitur yang diuji sudah memenuhi ekspektasi pemilik produk, mendapat 93% tingkat ketergunaan, dan dapat melayani setidaknya 1000 pengunjung dalam waktu yang bersamaan.

Rejection of candidates when applying for jobs is a common thing. Rejection, which often is not accompanied by reasons from the company, does not allow candidates to spot mistakes on their CV. Reviewin is built with the main feature of providing CV review services from experienced alumni and students of the University of Indonesia (UI) for alumni and students of UI who need it. This final project consists of several key activities which are requirements gathering, web application development, and evaluation. Core features such as reviewing CV, sending CV review requests, finding reviewers, and editing profiles, are successfully deployed on reviewin.me. Based on the evaluation results, the tested features have met the product owner's expectations, obtained 93% usability rate, and can handle at least 1000 visitors simultaneously."
Depok: 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ali Irsyaad Nursya'ban
"Penolakan kandidat ketika mendaftar pekerjaan merupakan hal yang lumrah terjadi. Penolakan yang seringkali tidak disertai dengan alasan, menyebabkan pelamar tidak mengetahui letak kesalahan pada CV mereka. Aplikasi Reviewin dibangun dengan fitur utama yaitu memberikan jasa reviu CV dari alumni dan mahasiswa Universitas Indonesia (UI) yang berpengalaman untuk alumni dan mahasiswa UI yang membutuhkan. Tugas akhir ini disusun berdasarkan aktivitas requirement gathering, pengembangan aplikasi web, dan evaluasi terhadap aplikasi Reviewin. Fitur-fitur utama seperti mereviu CV, mengirim permintaan reviu CV, mencari reviewer, dan mengedit profil, sudah tersedia di reviewin.me. Berdasarkan hasil evaluasi, fitur-fitur yang diuji sudah memenuhi ekspektasi pemilik produk, mendapat 93% tingkat ketergunaan, dan dapat melayani setidaknya 1000 pengunjung dalam waktu yang bersamaan.

Rejection of candidates when applying for jobs is a common thing. Rejection, which often is not accompanied by reasons from the company, does not allow candidates to spot mistakes on their CV. Reviewin is built with the main feature of providing CV review services from experienced alumni and students of the University of Indonesia (UI) for alumni and students of UI who need it. This final project consists of several key activities which are requirements gathering, web application development, and evaluation. Core features such as reviewing CV, sending CV review requests, finding reviewers, and editing profiles, are successfully deployed on reviewin.me. Based on the evaluation results, the tested features have met the product owner's expectations, obtained 93% usability rate, and can handle at least 1000 visitors simultaneously."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Fathinah Asma Izzati
"Penolakan kandidat ketika mendaftar pekerjaan merupakan hal yang lumrah terjadi. Penolakan yang seringkali tidak disertai dengan alasan, menyebabkan pelamar tidak mengetahui letak kesalahan pada CV mereka. Aplikasi Reviewin dibangun dengan fitur utama yaitu memberikan jasa reviu CV dari alumni dan mahasiswa Universitas Indonesia (UI) yang berpengalaman untuk alumni dan mahasiswa UI yang membutuhkan. Tugas akhir ini disusun berdasarkan aktivitas requirement gathering, pengembangan aplikasi web, dan evaluasi terhadap aplikasi Reviewin. Fitur-fitur utama seperti mereviu CV, mengirim permintaan reviu CV, mencari reviewer, dan mengedit profil, sudah tersedia di reviewin.me. Berdasarkan hasil evaluasi, fitur-fitur yang diuji sudah memenuhi ekspektasi pemilik produk, mendapat 93% tingkat ketergunaan, dan dapat melayani setidaknya 1000 pengunjung dalam waktu yang bersamaan.

Rejection of candidates when applying for jobs is a common thing. Rejection, which often is not accompanied by reasons from the company, does not allow candidates to spot mistakes on their CV. Reviewin is built with the main feature of providing CV review services from experienced alumni and students of the University of Indonesia (UI) for alumni and students of UI who need it. This final project consists of several key activities which are requirements gathering, web application development, and evaluation. Core features such as reviewing CV, sending CV review requests, finding reviewers, and editing profiles, are successfully deployed on reviewin.me. Based on the evaluation results, the tested features have met the product owner's expectations, obtained 93% usability rate, and can handle at least 1000 visitors simultaneously."
Depok: 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Harahap, Nanda Ilham
"Perkembangan bidang machine learning telah mengalami kemajuan yang pesat dari berbagai domain dimana dibutuhkan sistem otomasi. Hal ini membuat model yang advanced, seperti Convolutional Neural Network yang merupakan bagian dari deep learning, dapat mencapai performa yang baik dalam melakukan klasifikasi, identifikasi objek, hingga bahkan melebihi kemampuan manusia dalam beberapa domain. Salah satu aplikasi dari perkembangan ini adalah klasifikasi gambar terutama pada bidang medis misalnya pada klasifikasi kanker kulit. Diagnosis otomatis kanker kulit dari lesi kulit dengan menggunakan gambar dermoskopi masih merupakan tugas yang menantang bagi kecerdasan buatan seperti Artificial Neural Network khususnya pada metode konvolusi yang umum pada gambar, atau disebut Convolutional Neural Network. Penggunaan arsitektur transfer learning dengan TF Lite pada klasifikasi merupakan faktor penting dalam membuat diagnosis otomatis yang mobile, akurat, dan cekat. Meski demikian, model-model klasifikasi yang sudah terbuat tersebut masih belum dapat sempurna melakukan kategorisasi pada penyakit lesi kulit. Pada dataset ini terdapat 7 kelas label yang akan diklasifikasi dengan menggunakan arsitektur InceptionResNetV2. Kemudian dilakukan penanganan imbalanced data dengan menggunakan metode oversampling untuk mengangani dataset yang tidak rata. Setelah itu hasilnya akan dianalisis dengan beberapa metrik parameter yang dipakai yaitu presisi, recall, akurasi, dan F1-score. Didapatkan hasil terbaik ketika EarlyStopping pada epoch terakhir dengan akurasi overall pada 87.56%, top-2 pada 95.05%, dan top-3 pada 97.46%. Durasi klasifikasi juga telah diukur dengan Streamlit Share dan HuggingFace Spaces. Durasi tersebut ialah waktu dari ping ke tiap host, dimana aplikasi web Streamlit memiliki latency yang lebih rendah dibandingkan dengan HuggingFace, pada rata-rata (1,17 ms vs 1,49 ms), dan standar deviasi latency pada aplikasi web HuggingFace lebih tinggi dibandingkan dengan Streamlit (0,10 ms vs 0,49 ms), durasi klasifikasi HuggingFace memiliki waktu klasifikasi rata-rata 116 ms dan standar deviasi sebesar 5 ms, sedangkan Streamlit lebih rendah, yaitu 97 ms dan standar deviasi sebesar 2 ms.

The development of the field of machine learning has experienced rapid progress from various domains where automation systems are needed. This makes advanced models, such as Convolutional Neural Networks that are part of deep learning, can achieve good performance in classifying, object identification, and even exceed human capabilities in some domains. One application of this development is image classification, especially in the medical field, for example in the classification of skin cancer. Automatic diagnosis of skin cancer from skin lesions using dermoscopy images is still a challenging task for artificial intelligences such as Artificial Neural Networks, especially the convolutional method common in images, or called Convolutional Neural Networks. The use of transfer learning architecture with TF Lite on classification is an important factor in making automatic diagnosis mobile, accurate, and agile. However, the classification models that have been made are still unable to perfectly categorize skin lesion diseases. In this dataset there are 7 label classes that will be classified using the InceptionResNetV2 architecture. Then handling imbalanced data using the oversampling method to handle uneven datasets. After that, the results will be analyzed with several metric parameters used, namely precision, recall, accuracy, and F1-score. The best results were obtained when EarlyStopping at the last epoch with overall accuracy at 87.56%, top-2 at 95.05%, and top-3 at 97.46%. The duration of classification has also been measured with Streamlit Share and HuggingFace Spaces. The duration is the time from ping to each host, where the Streamlit web application has lower latency compared to HuggingFace, on average (1.17 ms vs 1.49 ms), and the standard deviation of latency on the HuggingFace web application is higher than that of Streamlit (0.10 ms vs 0.49 ms), the duration of HuggingFace classification has an average classification time of 116 ms and a standard deviation of 5 ms, while Streamlit is lower, at 97 ms and standard deviation of 2 ms."
Depok: 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fransiska Dyah Ayu Oktaviani
"Seiring dengan semakin berkembangnya banyaknya aplikasi khususnya aplikasi berbasis website, semakin banyak pula serangan yang dapat mengancam aplikasi yang telah dibuat. Salah satu serangan yang paling sering dilakukan adalah SQL Injection. Sehingga pada skripsi ini akan membahas mengenai penerapan tool pendeteksi SQL Injection berbasis website dengan mengacu pada OWASP Code Review. Pengujian dilakukan dengan membandingkan file berisi kode html atau php dengan parameter yang telah ditentukan. Berdasarkan OWASP Code Review, terdapat parameter-parameter yang digunakan dalam pengujian ini yakni penggunaan hashing, ekstensi basis data, sanitasi dan validasi data, serta prepared statements. Hasil dari penelitian menunjukkan bahwa tool berupa website yang dibuat dapat menguji file yang diunggah secara akurat.

Along with the growing of applications, especially website based application, there are also more attacks that can threaten applications that have been made. One of the most common attacks is SQL Injection. Therefor, this thesis will discuss about implementation and development of SQL Injection detection tool based on OWASP Code Review. Testing is done by comparing file containing html and php code with parameters that have been determined. Based on OWASP Code Review, parameters used in this test are the use of hashing, database extension, data sanitation and validation, as well as prepared statements. The result of this research indicate that the tool created can test uploaded file accurately.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
S68690
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ammar Faridzki Syarif
"Ketepatan waktu lulus mahasiswa memiliki dampak yang baik untuk perguruan tinggi dan mahasiswa itu sendiri. Kualitas perguruan tinggi dapat dilihat dengan persentase mahasiswa yang lulus tepat waktu. Selain itu, bagi mahasiswa ketepatan waktu lulus juga hal yang perlu diperhatikan jika ingin menerima beasiswa. Mahasiswa yang dapat dibilang tepat waktu lulusnya adalah mahasiswa yang berhasil lulus dari perguruan tinggi dengan masa waktu studi 3.5 sampai 4 tahun. Saat ini, belum terdapat Penelitian yang menggunakan data PDDikti untuk memprediksi ketepatan waktu lulus mahasiswa Universitas Indonesia. Selain itu, belum terdapat juga sistem berbasis website yang dapat melakukan prediksi ketepatan waktu lulus mahasiswa Universitas Indonesia dan visualisasi data terkait ketepatan waktu lulus mahasiswa dengan menggunakan data dari PDDikti. Penelitian ini akan membandingkan performa 4 model dalam 8 skenario berbeda. Penelitian berhasil menghasilkan model pembelajaran mesin untuk memprediksi ketepatan waktu lulus dan prediksi tahun kelulusan.Metrik yang digunakan pada performa kedua model adalah f1-score, dengan nilai akhir 92.75% untuk model prediksi ketepatan waktu lulus dan 88.86% untuk model prediksi tahun kelulusan. Di akhir, penelitian ini hanya memakai model prediksi tahun kelulusan yang dapat merepresentasikan prediksi ketepatan waktu lulus mahasiswa. Penelitian ini juga berhasil mengimplementasikan dua sistem berbasis website yaitu sistem prediksi ketepatan waktu lulus untuk mahasiswa dan prediksi ketepatan waktu lulus dashboard dosen yang dapat digunakan untuk melakukan prediksi ketepatan waktu lulus berdasarkan pemodelan machine learning, serta menyajikan visualisasi data berdasarkan data dari PDDikti. Visualisasi berhasil dilakukan dengan menggunakan line chart, pie chart, bar chart, dan geo chart.

The timely graduation of students has a positive impact on both the university and the students themselves. The quality of a university can be measured by the percentage of students who graduate on time. Additionally, for students, graduating on time is important if they want to receive scholarships. A student can be considered to have graduated on time if they successfully complete their studies at the university within a study period of 3.5 to 4 years. Currently, there is no research that utilizes PDDikti data to predict the timely graduation of students at the University of Indonesia. Furthermore, there is also no website-based system available that can predict the timely graduation of students at the University of Indonesia and visualize data related to the timely graduation using data from PDDikti. This research will compare the performance of four models in eight different scenarios. The research successfully produces a machine learning model to predict the timely graduation and the predicted year of graduation. The performance metric used for both models is the f1-score, with a final score of 92.75% for the timely graduation prediction model and 88.86% for the year of graduation prediction model. In the end, this research only utilizes the year of graduation prediction model, which can represent the prediction of timely graduation of students. The research also successfully implements two website-based systems, namely the timely graduation prediction system for students and the timely graduation prediction dashboard for faculty members, which can be used to predict the timely graduation based on machine learning modeling and provide data visualization based on PDDikti data. Visualization is successfully carried out using line charts, pie charts, bar charts, and geo charts."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reno Fathoni
"Ketepatan waktu lulus mahasiswa memiliki dampak yang baik untuk perguruan tinggi dan mahasiswa itu sendiri. Kualitas perguruan tinggi dapat dilihat dengan persentase mahasiswa yang lulus tepat waktu. Selain itu, bagi mahasiswa ketepatan waktu lulus juga hal yang perlu diperhatikan jika ingin menerima beasiswa. Mahasiswa yang dapat dibilang tepat waktu lulusnya adalah mahasiswa yang berhasil lulus dari perguruan tinggi dengan masa waktu studi 3.5 sampai 4 tahun. Saat ini, belum terdapat Penelitian yang menggunakan data PDDikti untuk memprediksi ketepatan waktu lulus mahasiswa Universitas Indonesia. Selain itu, belum terdapat juga sistem berbasis website yang dapat melakukan prediksi ketepatan waktu lulus mahasiswa Universitas Indonesia dan visualisasi data terkait ketepatan waktu lulus mahasiswa dengan menggunakan data dari PDDikti. Penelitian ini akan membandingkan performa 4 model dalam 8 skenario berbeda. Penelitian berhasil menghasilkan model pembelajaran mesin untuk memprediksi ketepatan waktu lulus dan prediksi tahun kelulusan.Metrik yang digunakan pada performa kedua model adalah f1-score, dengan nilai akhir 92.75% untuk model prediksi ketepatan waktu lulus dan 88.86% untuk model prediksi tahun kelulusan. Di akhir, penelitian ini hanya memakai model prediksi tahun kelulusan yang dapat merepresentasikan prediksi ketepatan waktu lulus mahasiswa. Penelitian ini juga berhasil mengimplementasikan dua sistem berbasis website yaitu sistem prediksi ketepatan waktu lulus untuk mahasiswa dan prediksi ketepatan waktu lulus dashboard dosen yang dapat digunakan untuk melakukan prediksi ketepatan waktu lulus berdasarkan pemodelan machine learning, serta menyajikan visualisasi data berdasarkan data dari PDDikti. Visualisasi berhasil dilakukan dengan menggunakan line chart, pie chart, bar chart, dan geo chart.

The timely graduation of students has a positive impact on both the university and the students themselves. The quality of a university can be measured by the percentage of students who graduate on time. Additionally, for students, graduating on time is important if they want to receive scholarships. A student can be considered to have graduated on time if they successfully complete their studies at the university within a study period of 3.5 to 4 years. Currently, there is no research that utilizes PDDikti data to predict the timely graduation of students at the University of Indonesia. Furthermore, there is also no website-based system available that can predict the timely graduation of students at the University of Indonesia and visualize data related to the timely graduation using data from PDDikti. This research will compare the performance of four models in eight different scenarios. The research successfully produces a machine learning model to predict the timely graduation and the predicted year of graduation. The performance metric used for both models is the f1-score, with a final score of 92.75% for the timely graduation prediction model and 88.86% for the year of graduation prediction model. In the end, this research only utilizes the year of graduation prediction model, which can represent the prediction of timely graduation of students. The research also successfully implements two website-based systems, namely the timely graduation prediction system for students and the timely graduation prediction dashboard for faculty members, which can be used to predict the timely graduation based on machine learning modeling and provide data visualization based on PDDikti data. Visualization is successfully carried out using line charts, pie charts, bar charts, and geo charts."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iqfal Fazrial Pramudya
"Ketepatan waktu lulus mahasiswa memiliki dampak yang baik untuk perguruan tinggi dan mahasiswa itu sendiri. Kualitas perguruan tinggi dapat dilihat dengan persentase mahasiswa yang lulus tepat waktu. Selain itu, bagi mahasiswa ketepatan waktu lulus juga hal yang perlu diperhatikan jika ingin menerima beasiswa. Mahasiswa yang dapat dibilang tepat waktu lulusnya adalah mahasiswa yang berhasil lulus dari perguruan tinggi dengan masa waktu studi 3.5 sampai 4 tahun. Saat ini, belum terdapat Penelitian yang menggunakan data PDDikti untuk memprediksi ketepatan waktu lulus mahasiswa Universitas Indonesia. Selain itu, belum terdapat juga sistem berbasis website yang dapat melakukan prediksi ketepatan waktu lulus mahasiswa Universitas Indonesia dan visualisasi data terkait ketepatan waktu lulus mahasiswa dengan menggunakan data dari PDDikti. Penelitian ini akan membandingkan performa 4 model dalam 8 skenario berbeda. Penelitian berhasil menghasilkan model pembelajaran mesin untuk memprediksi ketepatan waktu lulus dan prediksi tahun kelulusan.Metrik yang digunakan pada performa kedua model adalah f1-score, dengan nilai akhir 92.75% untuk model prediksi ketepatan waktu lulus dan 88.86% untuk model prediksi tahun kelulusan. Di akhir, penelitian ini hanya memakai model prediksi tahun kelulusan yang dapat merepresentasikan prediksi ketepatan waktu lulus mahasiswa. Penelitian ini juga berhasil mengimplementasikan dua sistem berbasis website yaitu sistem prediksi ketepatan waktu lulus untuk mahasiswa dan prediksi ketepatan waktu lulus dashboard dosen yang dapat digunakan untuk melakukan prediksi ketepatan waktu lulus berdasarkan pemodelan machine learning, serta menyajikan visualisasi data berdasarkan data dari PDDikti. Visualisasi berhasil dilakukan dengan menggunakan line chart, pie chart, bar chart, dan geo chart.

The timely graduation of students has a positive impact on both the university and the students themselves. The quality of a university can be measured by the percentage of students who graduate on time. Additionally, for students, graduating on time is important if they want to receive scholarships. A student can be considered to have graduated on time if they successfully complete their studies at the university within a study period of 3.5 to 4 years. Currently, there is no research that utilizes PDDikti data to predict the timely graduation of students at the University of Indonesia. Furthermore, there is also no website-based system available that can predict the timely graduation of students at the University of Indonesia and visualize data related to the timely graduation using data from PDDikti. This research will compare the performance of four models in eight different scenarios. The research successfully produces a machine learning model to predict the timely graduation and the predicted year of graduation. The performance metric used for both models is the f1-score, with a final score of 92.75% for the timely graduation prediction model and 88.86% for the year of graduation prediction model. In the end, this research only utilizes the year of graduation prediction model, which can represent the prediction of timely graduation of students. The research also successfully implements two website-based systems, namely the timely graduation prediction system for students and the timely graduation prediction dashboard for faculty members, which can be used to predict the timely graduation based on machine learning modeling and provide data visualization based on PDDikti data. Visualization is successfully carried out using line charts, pie charts, bar charts, and geo charts."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Lazuardi Nuriman
"ABSTRAK
Evaluasi ketergunaan pada situs web perpustakaan perguruan tinggi penting untuk dilakukan agar pengguna tetap setia mengunjunginya dan hasilnya dapat dijadikan dasar untuk pengembangan lebih lanjut. Penelitian ini bertujuan untuk mengevaluasi ketergunaan pada situs web Perpustakaan Universitas Indonesia antara angkatan 2016 dan 2019. Metode yang digunakan adalah kuantitatif deskriptif dengan menggunakan kuesioner berdasarkan System Usability Scale. Kuesioner disebarkan secara daring melalui aplikasi pesan instan dan media sosial. Data penelitian dianalisis menggunakan teknik perhitungan skor System Usability Scale, kemudian hasilnya dibandingkan antara kedua angkatan. Hasil analisis menunjukkan bahwa angkatan 2016 memiliki nilai ketergunaan situs web yang lebih baik daripada angkatan 2019. Kedua angkatan juga memiliki pengalaman pengguna yang cukup baik berdasarkan lima komponen ketergunaan Nielsen, yaitu learnability, efficiency, memorability, errors, dan satisfaction. Nilai ketergunaan situs web Perpustakaan Indonesia belum dapat diterima dengan baik oleh mahasiswa angkatan 2016 dan 2019, meskipun terdapat perbedaan skor antara kedua angkatan. Karena skor SUSnya tergolong di bawah rata-rata dan di bawah acceptable, maka penelitian lebih lanjut dapat dilakukan untuk mengidentifikasi masalah yang ada menggunakan metode atau instrumen yang berbeda.

ABSTRACT
Evaluation of usability on the university library website is important so that users remain loyal to visit it and the results can be used as a basis for further development. This study aims to evaluate the usability on the University Indonesia Library website between the batch of 2016 and 2019. The method used is descriptive quantitative using a questionnaire based on the System Usability Scale. Questionnaires are distributed online through instant messaging applications and social media. The research data were analyzed using the System Usability Scale score calculation technique, then the results were compared between the two batches. The results of the analysis showed that the batch of 2016 had a better website usability value than the batch of 2019. The two batches also have good user experience based on the five components of Nielsen's usability, namely learnability, efficiency, memorability, errors, and satisfaction. The value of the use of the Indonesian Library's website has not been well accepted by students of batch 2016 and 2019, although there are differences in scores between the two batches. Because the SUS score is below average and below acceptable, further research can be conducted using different method or instrument to identify the existing problems."
2020
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Fajar Anugerah Subekti
"Klinik gigi DN merupakan salah satu klinik gigi yang saat ini masih menggunakan sistem pengoperasian secara offline, banyak penggunaan kertas dalam pencatatan, appointment dilakukan secara manual, dan data yang tidak terintegrasi. Hal ini dapat menyebabkan terhambatnya pelayanan pasien sehingga timbulnya persepsi buruk dari pasien akan pelayanan yang dilakukan klinik gigi DN. Berdasarkan masalah tersebut, tim pengembang mengembangkan sebuah sistem informasi yang dapat menjadi solusi dari permasalahan tersebut. Pada pengembangan, dikembangkan dua sistem terpisah (internal web apps dan aplikasi PWA [Progressive Web Apps]) yang saling terintegrasi satu sama lain. Internal web apps akan digunakan oleh pihak internal klinik gigi DN dalam menjalankan proses bisnisnya, sementara aplikasi PWA (Progressive Web Apps) digunakan oleh pasien klinik gigi DN. Sistem ini dikembangkan menggunakan salah satu metode pengembangan perangkat lunak agile, yaitu Scrum. Kerangka kerja Scrum yang digunakan terdiri dari tiga fase, yaitu pre-game, game (development), dan post-game. Pada fase pre-game, dilakukan requirement gathering, perencanaan, dan architecture/high level design. Pada fase game, dijalankannya sprint untuk pengerjaan proyek. Pada fase post-game dilakukannya testing terhadap sistem yang telah dikembangkan. Pada pengembangan sistem di klinik gigi DN ini, dihasilkan dua sistem (Internal web apps untuk internal klinik dan aplikasi PWA [Progressive Web Apps] bagi pengguna eksternal klinik) yang dibangun dengan framework Spring Boot dan React JS. Dengan dikembangkan sistem informasi dan aplikasi tersebut, diharapkan pihak klinik gigi DN dapat lebih efektif dan efisien dalam melayani pasien.

DN dental clinic that currently uses an offline operating procedure, uses a lot of paper in recording, appointments are done manually, and the data is not integrated. This can cause delays in serving patients so that there is a bad perception from patients about the services provided by the DN dental clinic. Based on these problems, the development team developed an information system that could be a solution to these problems. During the development, two separate system (internal web apps and PWA [Progressive Web Apps] application) were developed which were integrated with each other. The internal web apps will be used by DN dental clinic internal parties in carrying out their business processes, while the PWA (Progressive Web Apps) application is used by DN dental clinic patients. The system is developed using one of the agile software development methods, namely Scrum. The Scrum framework used consists of three phases, namely, pre-game, game (development), and post-game. In the pre-game phase, requirements gathering, planning, and architecture/high level design are carried out. In the game phase, sprints are executed. In the post-game phase, testing of the system that has been developed is carried out. In the development of the DN dental clinic information system, two system (internal web apps for internal clinic and PWA [Progressive Web Apps] application deliver to patient) were produced which were built with Spring Boot and React JS frameworks. By developing the system information and applications, it is oped that the DN dental clinic can be more effective and efficient in serving patients."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>