Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27508 dokumen yang sesuai dengan query
cover
Kenrico Valens
"

Cacar monyet muncul pada 2022 sebagai penyakit yang ditakutkan berpotensi sebagai pandemi selanjutnya. Cacar monyet adalah penyakit infeksi virus dari hewan (zoonosis) dan termasuk keluarga virus yang sama dengan cacar (smallpox, variola). Walaupun penyakit cacar monyet tidak lebih berbahaya dari COVID-19, diperlukan langkah pencegahan untuk mengurangi risiko penularan. Pendekatan machine learning dapat dilakukan dengan pengusulan penggunaan tiga arsitektur CNN, yaitu EfficientNetV2B1, MobileNetV3, dan NASNetMobile untuk mengklasifikasi cacar monyet dari citra lesi kulit. Ketiga model dilakukan transfer learning menggunakan pre-trained weights ImageNet bertotal 29 skenario dengan pemisahan data train dan test, dan melakukan augmentasi yang berbeda untuk menguji performa model. Skenario difokuskan pada peningkatan recall untuk mengurangi tingkat false negative pada prediksi cacar monyet. Penelitian ini juga membangun dataset yang terdiri dari empat kelas, yaitu cacar monyet, cacar air, campak, dan sehat dengan jumlah 40 hingga 100 foto per kelas. Citra dataset bersumber dari Kaggle dan web Kesehatan dan divalidasi kembali menggunakan Google Reverse Image. Dari eksperimen 29 skenario, didapatkan skenario dengan model yang optimal adalah MobileNetV3 versi minimalistic dengan recall 93,2%, dengan ukuran 7,6 MB, selisih recall dan validation recall 0,0035 dengan pemisahan data train dan test sebesar 70:30 dengan optimizer Adam 0,0001. Model dikonversi ke dalam format TensorFlow Lite dan disematkan ke dalam aplikasi Android yang dirancang menggunakan bahasa pemrograman Kotlin dan library UCrop untuk cropping citra yang diambil pengguna agar terfokus pada lesi kulit. Model membutuhkan rata-rata waktu inferensi 40 milidetik pada aplikasi Android.


Monkeypox emerged in 2022 as a disease that potentially be the next pandemic. Monkeypox is a virus infection from animals (zoonosis) and categorized as the same family as smallpox (variola). Even monkeypox is not deadly as COVID-19, preventive measure is needed to reduce infections. Machine learning approach can be implemented with 3 proposed CNN architecture, EfficientNetV2B1, MobileNetV3, and NASNetMobile to classify monkeypox from skin lesion image. Transfer learning will be done to the three models using pre-trained weights from ImageNet of 29 scenarios with variations of train-test data split and augmentation to benchmark model performance. The experiment is focused on improving recall as minimizing false negative prediction on monkeypox. This paper also built a new dataset with 4 class, monkeypox, chickenpox, measles, and healthy skin which has 40 to 100 image per class. The dataset images are compiled from Kaggle and health website and revalidate with Google Reverse Image. From 29 experiment scenarios, the resulted best model is MobileNetV3 minimalistic with 93,2% recall, 7,6 MB in size, difference in training and validation recall of 0,0035% with data train-test splits 70:30 and optimizer using Adam 0,0001. The model is converted to TensorFlow Lite format to be embedded in Android application that is build with Kotlin and UCrop library to crop the image to focus on the skin lesions. The model has a mean of 40 milliseconds inference in the application.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanvey Xavero
"Jumlah E-Waste yang terus bertambah memerlukan pengelolaan yang lebih serius. Masalah yang sering dihadapi di ranah pengelolaan E-Waste adalah bercampurnya E-Waste yang ada dengan E-Waste lainnya. Pembuangan E-Waste secara sembarangan dapat berakibat buruk bagi lingkungan. Untuk memilah-milah E-Waste dilakukan proses klasifikasi E-Waste dengan menggunakan teknologi Image Classification. Image Classification menjadi salah satu topik dari deep learning yang banyak digunakan pada machine learning. Aplikasi ini menggunakan deep learning dengan metode Convolutional Neural Network (CNN). Jumlah dataset yang digunakan adalah berupa 4021 gambar E-Waste yang diklasifikasi menjadi 9 kategori, yaitu telepon genggam, kabel, integrated circuit, baterai, bola lampu, resistor, transistor, kapasitor dan PC/Laptop. Dari beberapa variasi yang diuji, model yang paling stabil adalah CNN dengan VGG-16 transfer learning yang memiliki akurasi 94%. Transfer learning adalah teknik yang menggunakan model yang sudah ditraining sebelumnya (pre-trained model) untuk mengklasifikasikan dataset yang baru. Dari penelitian ini dapat disimpulkan bahwa kinerja dari model yang telah dibuat dapat berjalan dengan optimal dalam mengklasifikasikan jenis-jenis E-Waste tersebut.

The amount of e-waste that continues to increase exponentially, requires a serious e-waste management process. The problem that is often faced in the realm of e-waste management is that the existing e-waste is mixed with other types of e-waste. Indiscriminate disposal of e-waste can cause serious damage to the environment. An e-waste classification process can be carried out using Image Classification technology. Image Classification is one of the deep learning application topic that is widely used in machine learning. In this study, we use dataset which consists of 4021 images of e-waste classified into 9 categories, i.e. mobile phone, wire, integrated circuit, capacitor, resistor, transistor, battery, light bulb and PC/Laptop. In this study, we used two types of Machine Learning algorithm. The first one is deep learning with the Convolutional Neural Network (CNN) method and the second one is VGG-16 transfer learning. The results are compared and analyzed based on Accuracy, Precision, Recall, and F1-Score Evaluation Metrics. Out of the variations of hyperparameter tested, the most stable model is CNN with VGG-16 transfer learning which has the average recall of 93%, the average precision of 93%, the average F1-score of 92%, and the average accuracy of 94%.. The result of our study show that the performance of the model can run optimally in classifying the types of e-waste."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ji, Ye Chan
"Umumnya, acute ischaemic stroke AIS didiagnosis menggunakan MRI Magnetic Resonance Imaging, CT Computed Tomography atau fMRI Functional MRI. Namun, MRI, fMRI dan CT tidak tersedia di rumah sakit komunitas rumah sakit tipe C, PUSKESMAS. Selain itu, MRI, fMRI dan CT tidak dapat mengukur untuk waktu yang lama atau tidak mungkin melakukan continuous scanning. Di sebagian besar rumah sakit komunitas, mereka memiliki mesin EEG Electroencephalogram untuk merekam gelombang otak. Sasaran dari penelitian ini adalah kemungkianan mengdiagnossa stroke iskemik dengan menggunakan EEG. Ada beberapa metode yang tersedia untuk mendeteksi AIS, yaitu BSI Brain Symmetry Index, DAR delta/alpha dan DTABR delta theta/alpha beta yang menganalisis rasio gelombang otak dari seluruh otak. Metode-metode ini perlu disempurnakan. Oleh karena itu, penulis mencoba menggunakan metode baru: specific asymmetry BSI. Metode ini membandingkan frekuensi bukan untuk 1-25 Hz melainkan mencari frekuensi band tertentu gelombang otak dari otak kanan dan kiri. Untuk mengembangkan sistem pendeteksian stroke, penulis menggunakan algoritma Extreme Machine Learning ELM karena ELM memberikan data akurat dengan kecepatan tinggi yang susah dibaca oleh mata manusia. Semua data diperoleh dari RS PON Rumah Sakit Pusat Otak Nasional, Jakarta dalam format edf. Ada 66 data pasien strke dan normal dan dianalisis dengan Matlab. BSI dan BSI asimetri spesifik dihitung menggunakan metode pwelch, dan DARs dan DTABR dihitung menggunakan wavelet db4. Algoritma ELM dikonfirmasi menggunakan CT-scan, yang didiagnosis oleh dokter. Diharapkan bahwa metode ini akan berguna untuk mendeteksi AIS di rumah sakit komunitas. Hasil penelitian ini diperoleh nilai akurasi deteksi stroke di atas 87.5.

Generally, acute ischaemic stroke AIS are diagnosed using MRI Magnetic Resonance Imaging, CT Computed Tomography or fMRI Functional MRI. However, MRI, fMRI and CT are not available in community hospitals C type hospitals, PUSKESMAS. In addition, MRI, fMRI and CT cannot measure for a long time or are unlikely to do continuous scanning. In most community hospitals, they have EEG Electroencephalogram machines to record brain waves. There are several methods available for detecting AIS, namely BSI Brain symmetry Index, DAR delta alpha and DTABR delta theta alpha beta that analyze the power ratio of brain waves from whole brain. These methods need to be refined. Therefore, authors attempt to use new method specific asymmetry BSI. This method compares the frequencies not for 1 25 Hz like BSI method, but looking for specific frequency band and the power ratio of brain wave from right and left hemisphere. To develop a stroke detection system, author uses the algorithm Extreme Machine Learning ELM because ELM provides accurate data with high speed rather read by human eye. All data were obtained from RS PON Rumah Sakit Pusat Otak Nasional, Jakarta in edf format. There were 66 voluntary subjects and analyzed with Matlab. The BSIs and specific asymmetry BSIs were calculated using pwelch methods, and the DARs and DTABRs were calculated using wavelet db4. The ELM algorithm was confirmed using CT scan, which was diagnosed by qualified doctors. It is expected that this method would be useful for detecting AIS in community hospitals. This research obtained 87.5 accuracy for detecting stroke."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Alwi Sukra
"Teknologi deep learning dapat menyelesaikan banyak masalah yang sulit dipecahkan oleh rumus matematis biasa. Salah satu masalah yang bisa diatasi adalah bahaya akibat rasa kantuk yang dialami pengemudi saat berkendara. Pada penelitian ini dibuat aplikasi android sistem deteksi kantuk yang memanfaatkan kamera smartphone. Kamera digunakan untuk mendapatkan informasi fitur citra wajah yaitu aspek rasio mata kanan, aspek rasio mata kiri, aspek rasio mulut, percentage of eye closure (PERCLOS), tingkat kejadian microsleep, dan tingkat kejadian menguap. Fitur-fitur tersebut didapat dari proses transformasi titik-titik landmark wajah. Pada penelitian ini, ditemukan bahwa metode terbaik untuk mendapatkan titik landmark wajah adalah dengan pelacakan Lucas-Kanade optical flow dengan 5 jumlah frame yang dilacak. Fitur-fitur yang dikumpulkan dapat digunakan untuk mendeteksi tingkat kantuk dengan memanfaatkan model deep learning yang telah dilatih dengan data yang dikumpulkan dari 10 orang. Pada penelitian ini, ada 2 jenis model deep learning yang dilatih untuk mendeteksi tingkat kantuk yaitu model deep neural network (DNN) dan long short-term memory (LSTM). DNN memiliki keseluruhan performa yang lebih baik dibandingkan LSTM. DNN memiliki accuracy sebesar 0.902538 dan f1 sebesar 0.899563. Sedangkan LSTM memiliki dari accuracy sebesar 0.891857 dan f1 sebesar 0.892689. Aplikasi android sistem deteksi kantuk yang dibuat menggunakan model deep learning DNN dan memiliki performa yang bagus dengan accuracy sebesar 0.844 dan f1 sebesar 0.865052. Aplikasi Android memiliki mekanisme pemberitahuan berupa suara yang dimainkan ketika pengemudi mengantuk. Selain itu, pada aplikasi Android juga terdapat 2 fungsi tambahan yaitu deteksi tidur dan deteksi gangguan konsentrasi pengemudi. Kedua fungsi tersebut akan mengeluarkan suara ketika terdeteksi untuk memberitahukan kepada pengguna. Dengan adanya aplikasi sistem deteksi kantuk yang dibuat pada penelitian ini, diharapkan dapat mendeteksi tingkat kantuk pengemudi sehingga mengurangi risiko kecelakaan akibat mengantuk.

Deep learning technology can solve many problems that are difficult to solve by ordinary mathematical formulas. One of the problems that can be overcome is the danger due to drowsiness experienced by the driver while driving. In this study, a drowsiness detection system on Android application that uses a smartphone camera is made. The camera is used to obtain facial image feature informations which is right eye aspect ratio, left eye aspect ratio, mouth aspect ratio, percentage of eye closure (PERCLOS), microsleep rate, and yawning rate. These features are obtained by transforming and processing facial landmark points. In this study, it was found that the best method for obtaining facial landmarks points is from Lucas-Kanade optical flow tracking with 5 frames tracked. The features collected can be used to detect drowsiness by utilzing a deep learning model that has been trained with data collected from 10 volunteers. In this study, there are 2 types of deep learning models that are trained to detect drowsiness that are deep neural network (DNN) and long short-term memory (LSTM). DNN has better overall performance than LSTM. DNN has an accuracy of 0.902538 and f1 of 0.899563. Whereas LSTM has an accuracy of 0.891857 and f1 of 0.892689. The drowsiness detection system Android application is created using the DNN model and has a good performance with an accuracy of 0.844 and f1 of 0.865052. The Android application has a notification mechanism in the form of sound that played when the driver is detected to be drowsy. In addition, the Android application also has an additional function that are sleeping detection and driver distraction detection. Both functions will make a sound when detected to notify the user. With the application of drowsiness detection system made in this study, it is expected to detect the level of drowsiness of the driver thereby reducing the risk of accidents due to drowsiness.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josh Frederich
"Diagnosis otomatis kanker kulit dari lesi kulit dengan menggunakan gambar dermoskopi masih merupakan tugas yang menantang bagi kecerdasan buatan khususnya pada Artificial Neural Network dengan menggunakan deep learning. Penggunaan arsitektur yang tepat pada klasifikasi merupakan faktor penting dalam membuat diagnosis otomatis yang akurat. Meski demikian, model-model klasifikasi yang sudah terbuat tersebut masih belum dapat sempurna melakukan kategorisasi pada penyakit lesi kulit. Pada riset ini dilakukan penggantian arsitektur model klasifikasi yang digunakan dengan menggunakan arsitektur terbaru seperti EfficientNet B0 dan B1. Model EfficientNet B0 terbaik dengan menggunakan augmentasi saja memiliki akurasi, presisi, recall, dan f1-score sebesar 91%, 76%, 68%, dan 71% sedangkan EfficientNet B1 terbaik dengan menggunakan augmentasi dan class weight memiliki akurasi, presisi, recall, dan f1-score sebesar masing-masing 89%, 78%, 73%, dan 73%. Model EfficientNet B1 terbaik tersebut dapat mengungguli model state of the art yang ada dengan kenaikan recall dan f1-score sebesar 2% dan 12% dari model semi-supervised. Model juga dapat diimplementasikan dengan graphical user interface sehingga dapat digunakan oleh dokter spesialis kulit dalam pemeriksaan dermoskopi.
Automatic diagnosis of skin cancer from skin lesions using dermoscopy images is still a challenging task for artificial intelligence, especially in Artificial Neural Networks using deep learning. The use of the correct architecture in the classification is an important factor in making an accurate automatic diagnosis. However, the classification models that have been made are still not able to perfectly categorize skin lesions. In this research, a replacement of the classification model architecture used by using the latest architectures such as the EfficientNet B0 and B1 was conducted. The best EfficientNet B0 model that only used augmentation has the accuracy, precision, recall, and f1-scores of 91%, 76%, 68%, and 71% while the best EfficientNet B1 that used augmentation and class weights has the accuracy, precision, recall, and f1-score of 89%, 78%, 73%, and 73%, respectively. The best EfficientNet B1 model can outperform the existing state of the art model with an increase in recall and f1-score by 2% and 12% from the semi-supervised model, respectively. The model can also be implemented with a graphical user interface so that dermatologist can use it in dermoscopy examinations."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan Aurelius Faren
"Jakarta sebagai kota besar yang memiliki tingkat kepadatan yang tinggi pada saat jam-jam dan hari-hari kerja memiliki peraturan guna mengurangi kemacetan di jalan. Salah satu peraturannya adalah pemberlakukan plat nomor kendaraan ganjil genap sesuai dengan tanggal. Peraturan ini cukup efektif dalam mengurangi tingkat kemacetan di jalan-jalan protokol. Namun masih saja ada oknum-oknum yang melanggar peraturan ini dikarenakan kemampuan manusia yang terbatas sehingga tidak dapat selalu mengawasi plat nomor kendaraan secara maksimal. Dengan berkembangnya teknologi terutama di bidang computer vision masalah ini dapat dikurangi. Dengan menggunakan bantuan machine learning yaitu computer vision menggabungkan alat fisik yaitu kamera dengan komputer sehingga dapat mendeteksi dan membaca plat nomor pada kendaraan. Perkembangan teknologi membuat machine learning semakin berkembang sehingga proses melakukan deteksi dapat dilakukan dengan lebih cepat dan akurat. Untuk melakukan hal ini algoritma YOLOv7 dilatih untuk melakukan deteksi pada plat nomor kendaraan serta membacanya sehingga dapat diklasifikasian termasuk ganjil / genap sesuai dengan tanggal pendeteksian. Pada penelitian ini dilakukan pembangunan prototype sistem pendeteksi dan klasifikasi ini menggunakan machine learning dan computer vision untuk melakukan deteksi plat nomor pada kendaraan yang lewat di jalan-jalan protokol. Hasil dari penelitan ini adalah dengan menggunakan algoritma YOLOv7, model yang dihasilkan memiliki akurasi sebesar 86%, melakukan pembacaan plat nomor hasil deteksi dengan EeasyOCR memiliki tingkat kesalahan pembacaan per karakter 3.81% dan kesalahan pembacaan per kata sebesar 11.90%, sistem dapat melakukan deteksi dan pembacaan plat nomor secara real time dengan baik, melakukan identifikasi pada jenis tanggal (ganjil  genap) dan memberikan alert ketika ada plat nomor yang tidak sesuai ketentuan tanggal.

Jakarta as the big city and the capital of Indonesia that have high density rate in the work hours and days have a special rule to decrease the congestion rate in the road. One of the rules is the enforcement of odd even license plate rules that connect to the real time date. This rule is effective in decreasing the congestion rate in the major arterial roads. but there's still a loophole that makes people violate this rule, the human limited ability makes them can't always observe all the license plate. With the help of technology development in computer vision, can help to reduce the problem. Computer vision combines the video camera and computer to work side by side so it can read and detect the license plate number. Technology development also develops the computer vision ability so detection and recognition can be done with more accuracy and less time. To do this thing YOLOv7 algorithm trains a model to detect the license plate in a car and read the license plate so it can classify the license plate type (odd/even) and compare it with the research date type. This research build the prototype of detection and classifier system with machine learning and computer vision, to do the automatic odd /even license plate detection and recognition at the car in artery road. As the result of the research , the detection model made by YOLOv7 algorithm have a 86 % accuracy, and the character recognition with EasyOCR have a character error rate 3.81 %  and word error rate 11.90 % , the system prototype can run the detection and OCR in real time, the prototype can get the real time date and classified it as odd or even number, and give an alert when the detected license plate number violated the odd even rule.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nidya Anifa
"Diagnosis COVID-19 dapat dilakukan dengan berbagai metode, salah satunya dengan interpretasi citra medis rongga dada menggunakan machine learning. Namun, metode ini memiliki memerlukan waktu dan biaya yang besar, tidak ada standar dalam pengambilan gambar citra medis, dan pelindungan privasi pada data pasien. Model yang dilatih dengan dataset publik tidak selalu dapat mempertahankan performanya. Diperlukan metode pengklasifikasi berbasis multicenter yang dapat memiliki performa optimal pada dataset yang berbeda-beda. Skenario pertama dengan melatih model menggunakan arsitektur VGG-19 dan ConvNeXt dengan gabungan seluruh data dan masing-masing data. Lalu dilakukan fine tuning terhadap model yang dilatih pada gabungan seluruh data. Skenario kedua dengan Unsupervised Domain Adaptation berbasis maximum mean discrepancy dengan data publik sebagai source domain dan data privat sebagai target domain. Metode transfer learning dengan fine-tuning model pada arsitektur VGG-19 menaikkan train accuracy pada data Github menjadi 95% serta menaikkan test accuracy pada data Github menjadi 93%, pada data Github menjadi 93%, pada data RSCM menjadi 72%, dan pada data RSUI menjadi 75%. Metode transfer learning dengan fine-tuning model pada arsitektur ConvNeXt menaikkan evaluation accuracy pada data RSCM menjadi 73%. Metode unsupervised domain adaptation (UDA) berbasis maximum mean discrepancy (MMD) memiliki akurasi sebesar 89% pada dataset privat sehingga merupakan metode yang paling baik. Berdasarkan GRAD-CAM, model sudah mampu mendeteksi bagian paru-paru dari citra X-Ray dalam memprediksi kelas yang sesuai.

Diagnosis of COVID-19 can be done using various methods, one of which is by interpreting medical images of the chest using machine learning. However, this method requires a lot of time and money, there is no standard in taking medical images, and protecting patient data privacy. Models that are trained with public datasets do not always maintain their performance. A multicenter-based classification method is needed that can have optimal performance on different datasets. The first scenario is to train the model using the VGG-19 and ConvNeXt architecture by combining all data and each data. Then, the model trained using combined data is fine tuned. The second scenario uses Unsupervised Domain Adaptation based on maximum mean discrepancy with public data as the source domain and private data as the target domain. The transfer learning method with the fine-tuning model on the VGG-19 architecture increases train accuracy on Github data to 95% and increases test accuracy on Github data to 93%, on Github data to 93%, on RSCM data to 72%, and on data RSUI to 75%. The transfer learning method with the fine-tuning model on the ConvNeXt architecture increases the evaluation accuracy of RSCM data to 73%. The unsupervised domain adaptation (UDA) method based on maximum mean discrepancy (MMD) has an accuracy of 89% in private dataset making it the best method. Based on GRAD-CAM, the model has been able to detect parts of the lungs from X-Ray images in predicting the appropriate class."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rofif Zainul Muttaqin
"Perkembangan teknologi yang terus berkembang mendorong penggunaan aplikasi web di berbagai layanan, namun terdapat berbagai kerentanan pada aplikasi web yang setiap saat dapat dimanfaatkan penyerang untuk melakukan serangan. Untuk menanggulangi hal ini, salah satu upaya yang dapat dilakukan ialah menerapkan Web Application Firewall (WAF) yang dapat melindungi aplikasi web. WAF umumnya bekerja berdasarkan aturan yang ditetapkan sebelumnya. Namun kelemahan sistem ini ialah serangan yang terus berkembang, serta dalam mengkonfigurasi aturan pada WAF, diperlukan pengetahuan mendalam terkait aplikasi yang ada. Teknologi kecerdasan buatan, baik machine learning (ML) atau deep learning (DL) memperlihatkan potensi yang baik dalam mengenali jenis serangan. Di dalam penelitian ini dibangun sebuah Real-time DL-based WAF untuk meningkatkan keamanan pada aplikasi web. Berbagai model ML dan DL diujicoba untuk melakukan tugas deteksi serangan web, mulai dari Support Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN), dan Long Short-Term Memory (LSTM). Berdasarkan hasil pengujian, model CNN-LSTM meraih performa tertinggi yakni akurasi sebesar 98.61 %, presisi sebesar 99%, recall sebesar 98.08% dan f1-score sebesar 98.54%.. Dari hasil pengujian dengan web vulnerability scanner, performa DL-based WAF tidak kalah dengan ModSecurity WAF yang dijadikan sebagai pembanding. Dari hasil analisis, dapat disimpulkan bahwa penerapan DL-based WAF mampu meningkatkan keamanan pada aplikasi web.

The continuous development of technology drives the use of web applications in various services, but there are various vulnerabilities in web applications that can be exploited by attackers at any time. To overcome this, one effort that can be done is to implement a Web Application Firewall (WAF) that can protect web applications. WAF generally works based on pre-established rules. However, the weakness of this system is the evolving nature of attacks, and configuring rules on WAF requires in-depth knowledge related to existing applications. Artificial intelligence technology, both machine learning (ML) and deep learning (DL), shows good potential in recognizing types of attacks. In this research, a Real-time DL-based WAF was built to enhance security in web applications. Various ML and DL models were tested to perform the task of web attack detection, including Support Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM). Based on the test results, the CNN-LSTM model achieved the highest performance, namely an accuracy of 98.61%, precision of 99%, recall of 98.08%, and f1-score of 98.54%. From the testing results with a web vulnerability scanner, the performance of the DL-based WAF is not inferior to ModSecurity WAF, which is used as a comparison. From the analysis results, it can be concluded that the implementation of DL-based WAF can improve the security of web applications. "
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Rafiul Mahdi
"Pandemi COVID-19 yang semakin mengkhawatirkan telah membatasi masyarakat dalam melakukan kontak fisik dengan benda-benda pada fasilitas umum. Berbagai sarana interaksi yang membutuhkan kontak fisik telah digantikan dengan alternatif yang mendukung interaksi secara contactless. Elevator merupakan salah satu fasilitas umum yang paling sering digunakan masyarakat, maka perlunya alternatif dari penggunaan tombol pada elevator untuk mengurangi kemungkinan tersebarnya virus. Perkembangan teknologi computer vision telah menghasilkan banyak implementasi yang bermanfaat, salah satu implementasi tersebut adalah pendeteksian objek. Pada penelitian ini, dilakukan perancangan dan implementasi dari deep learning untuk menghasilkan model pengenalan gestur tangan secara real-time yang ditujukan untuk diterapkan sebagai sarana interaksi dengan elevator. Metode transfer learning digunakan karena dapat menghasilkan model yang akurat tanpa perlu menggunakan dataset yang besar. Perancangan model dilakukan menggunakan Tensorflow Object Detection API dan SSD MobileNetV2 sebagai pre-trained model yang telah dilatih dengan dataset Microsoft COCO. Model yang telah dilatih dengan jumlah training steps sebesar 11000 menggunakan Dataset A pada nilai threshold 0.7 dapat mendeteksi 8 gestur tangan dengan nilai akurasi mencapai 90% berdasarkan uji coba real-time yang dilakukan.

The increasingly worrying COVID-19 pandemic has limited people from making physical contact with objects in public facilities. Various means of interaction that require physical contact have been replaced with alternatives that support contactless interaction. Elevators are one of the public facilities that are most often used by the public, so there is a need for alternatives to using buttons on elevators to reduce the possibility of spreading the virus. The development of computer vision technology has resulted in many useful implementations, one of which is object detection. In this research, the design and implementation of deep learning and artificial neural network is carried out to produce a real-time hand gesture recognition model that is intended to be applied as a means of interaction with elevators. The transfer learning method is used because it can produce accurate models without the need to use large datasets. The model design is carried out using the Tensorflow Object Detection API and SSD MobileNetV2 as a pre-trained model that has been trained with the Microsoft COCO dataset. The model that has been trained with the number of training steps of 11000 using the Dataset A at a threshold value of 0.7 can detect 8 hand gestures with an accuracy reaching up to 90% based on real-time trials carried out."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lunnardo Soekarno Lukias
"

Dalam kehidupan kita sehari-hari umumnya banyak barang yang kita butuhkan dan gunakan dalam rumah tangga kita. Mulai dari bahan pangan, minuman, barang untuk membersihkan rumah, barang untuk mencuci pakaian, kudapan, dan lain sebagainya, Pada masyarakat kini banyak barang keperluan sehari-hari tersebut kita beli dan jumpai di berbagai tempat mulai dari warung di dekat rumah, supermarket, toko sembako, dan lain sebagainya. Akhir-akhir ini jumlah supermarket dan minimarket mulai menjamur. Pada tahun 2021 jumlah minimarket di Indonesia mencapai 38.323 gerai yang merupakan peningkatan sebanyak 21,7% dibandingkan pada tahun 2017 yakni hanya sebanyak 31.488 gerai saja. Dengan jumlah gerai yang semakin banyak, banyak masyarakat yang semakin banyak menggunakan jasanya untuk mendapatkan barang-barang kebutuhan sehari-hari mereka. Apalagi bila barang yang dibeli juga cukup banyak sehingga akan sulit untuk mendata barang-barang apa saja yang telah dibeli. Untuk memudahkan hal tersebut, penulis mengajukan sebuah solusi untuk membuat sebuah rancangan sistem yang akan memanfaatkan teknologi Deep Learning untuk mendeteksi tulisan pada struk belanja dari hasil pembelian barang pada minimarket. Hasilnya dari pengujian yang sudah dilakukan pada penelitian ini, masing-masing model Deep Learning memiliki tingkat akurasi mAP50 99,4% dan mAP50:95 72,9% untuk YOLOv5, tingkat akurasi mAP50 99,61% dan mAP50:95 65,19% untuk Faster R-CNN, dan tingkat akurasi mAP50 61,77% dan mAP50:95 98,09% untuk RetinaNet. Dimana YOLOv5 memiliki tingkat akurasi mAP50:95 tertinggi yakni 72,9% dan Faster R-CNN memiliki tingkat akurasi mAP50 tertinggi yakni 99,61%. Dimana pada proses implementasi sistem YOLOv5 dan Faster R-CNN berhasil melakukan proses pengenalan sedangkan RetinaNet gagal untuk melakukannya.


In our daily lives, we generally need and use many items in our households. Starting from food ingredients, drinks, household cleaning items, laundry items, snacks, and so on. Nowadays, many of these daily necessities are bought and found in various places such as small shops near our homes, supermarkets, grocery stores, and so on. Recently, the number of supermarkets and minimarkets has increased. In 2021, the number of minimarkets in Indonesia reached 38,323 branches which is an increase of 21.7% compared to 2017 which was only 31,488 branches. With the increasing number of branches, many people are using their services to obtain their daily necessities. Especially when the purchased items are quite a lot so it will be difficult to record what items have been purchased. To facilitate this matter, the author proposes a solution to create a system design that will utilize Deep Learning technology to detect writing on receipts from purchasing items at minimarkets. The results of testing that have been carried out in this study show that each Deep Learning model has an mAP50 accuracy level of 99.4% and mAP50:95 72.9% for YOLOv5, an mAP50 accuracy level of 99.61% and mAP50:95 65.19% for Faster R-CNN, and an mAP50 accuracy level of 61.77% and mAP50:95 98.09% for RetinaNet. YOLOv5 has the highest mAP50:95 accuracy rate at 72.9%, while Faster R-CNN has the highest mAP50 accuracy rate at 99.61%. Where in the implementation process, YOLOv5 and Faster R-CNN systems were able to perform recognition processes while RetinaNet failed to do so."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>