Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 90360 dokumen yang sesuai dengan query
cover
Ananda Fauzia Sabban
"Rumah menjadi tempat tinggal yang memiliki fungsi untuk memberikan rasa aman dan nyaman bagi penghuninya. Oleh sebab itu, pemilihan lokasi tempat tinggal menjadi penting, terutama bagi penduduk Jakarta, dimana Jakarta termasuk daerah rawan terhadap banjir. Banjir di Jakarta berdampak pada keamanan dan keselamatan hingga memberikan kerugian secara materil. Oleh karena itu, penelitian ini mengestimasikan property value harga rumah dengan mempertimbangkan lokasi tempat tinggal. Namun, penelitian ini juga akan menggunakan faktor penentu lokasi dalam pemilihan rumah lainnya, seperti atribut aksesibilitas dan atribut struktutal. Dalam pembuatan model estimasi ini akan menggunakan machine learning (ML) sebagai metodenya, yaitu Gradient Boosting Decision Trees (GBDT) dan Random Forest (RF), dengan optimasi Genetic Algorithm (GA) untuk meningkatkan kinerja model. Hasil penelitian ini menunjukkan GBDT dan RF memiliki performa sama baiknya dalam mengestimasi model property value rumah. Serta, penggunaan GA untuk meningkatkan kinerja model berhasil dengan meningkatnya nilai R2, serta menurunnya nilai MAPE dan RMSE. Penelitian ini juga melihat faktor – faktor yang berpengaruh terhadap model, dengan luas tanah dan luas bangunan menjadi faktor paling berpengaruh, yang diikuti oleh MRT, rumah sakit, pusat perbelanjaan, tol, SMP, dan lokasi rawan.

A home serves as a place of residence that provides a sense of safety and comfort for its occupants. Therefore, the selection of the location for a residence is crucial, especially for residents of Jakarta, as Jakarta is prone to flooding. Flooding in Jakarta impacts security, safety, and even material losses. Hence, this research aims to estimate the property value of houses by considering the location of the residence. Additionally, the research will incorporate other factors that influence housing selection, such as accessibility attributes and structural attributes. The estimation model will utilize machine learning (ML) techniques, specifically Gradient Boosting Decision Trees (GBDT) and Random Forest (RF), with Genetic Algorithm (GA) optimization to enhance the model's performance. The research findings indicate that both GBDT and RF perform equally well in estimating the property value model. Moreover, the use of GA to improve the model's performance is successful, as evidenced by an increase in the R2 value and a decrease in the MAPE and RMSE values. The research also examines the factors that influence the model, with land area and building area being the most influential factors, followed by proximity to the MRT, hospitals, shopping centres, toll roads, junior high schools, and flood-prone areas."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pohan, Nur Wulan Adhani
"Banyaknya konferensi menyulitkan peneliti memilih konferensi berkualitas. Kemungkinan peneliti tertipu dengan konferensi predator merupakan ancaman nyata yang perlu diperhatikan. Penilaian konferensi umumnya menggunakan pakar yang membutuhkan waktu dan biaya yang tinggi. Penelitian ini fokus untuk menganalisis jika h-indeks, impact factor, jumlah dokumen, dan SJR dapat menghasilkan penilaian kualitas yang sesuai dengan penilaian manual pakar dari beberapa situs penilaian konferensi serta membandingkan hasil performanya dengan penilaian jurnal. Data yang digunakan dikumpulkan dari empat sumber situs web yang mengkalkulasi kualitas konferensi luar negeri, yaitu CORE, ERA/QUALIS, AMiner, dan ScimagoJR. Data untuk penilaian jurnal didapatkan dari Guide2Research. Variabel yang digunakan untuk penilaian adalah h-indeks, jumlah dokumen, impact factor, dan SJR. Penelitian ini menggunakan metode K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Naïve Bayes, dan Decision Tree (DT). KNN menghasilkan nilai akurasi tertinggi sebesar 72,22% dan f1 score senilai 63,06% menggunakan data Qualis dengan faktor h-indeks, IF, dan SJR.

The number of conferences makes it difficult for researchers to choose quality conferences. The possibility of researchers being fooled by predatory conferences is a real threat that deserves attention. Conference assessments generally use experts who require time and money to evaluate the conferences. This study focuses on analyzing whether h-index, impact factor, number of documents, and SJR can produce quality assessments in accordance with expert manual assessments from several conference assessment sites and compare the resulting performance with journal assessments. The data used were collected from four website sources that calculate the quality of overseas conferences, namely CORE, ERA/QUALIS, AMiner, and ScimagoJR. Data for journal assessments were obtained from Guide2Research. The variables used for the assessment are h-index, number of documents, impact factor, and SJR. This research used K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Naïve Bayes, and Decision Tree (DT). KNN produced the highest accuracy value of 72.22% and the f1 score of 63.06% using Qualis data with the h-index, IF, and SJR factors."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Henry Prayoga
"Penelitian ini menganalisis akurasi peramalan permintaan produk barang konsumsi cepat (FMCG) menggunakan model Machine Learning, yaitu LSTM (Long Short-Term Memory) dan SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), dengan data sekunder dari April 2021 hingga April 2024 yang terdiri dari 36 observasi bulanan. Variabel dependen adalah total penjualan, sementara variabel eksogen mencakup pengeluaran per kapita, adopsi produk, proporsi penjualan dari promosi, jumlah toko yang menjual produk, dan pangsa pasar produk. Hasil menunjukkan model LSTM memiliki akurasi lebih tinggi dalam memprediksi nilai penjualan dibandingkan SARIMAX, dengan nilai Mean Absolute Percentage Error (MAPE) yang lebih rendah pada sebagian besar sampel. Analisis korelasi mengungkapkan variabel jumlah toko yang menjual produk dan adopsi produk berpengaruh signifikan terhadap nilai penjualan dalam model LSTM, sedangkan SARIMAX unggul dalam menangkap pola musiman namun memiliki MAPE lebih tinggi. Penelitian ini menyarankan penggunaan model LSTM untuk data time series yang kompleks dan tidak stasioner, sementara SARIMAX lebih cocok untuk data dengan komponen musiman yang kuat. Pemilihan model harus mempertimbangkan karakteristik data dan tujuan analisis.

This study analyzes the forecasting accuracy of fast-moving consumer goods (FMCG) demand using Machine Learning models, namely LSTM (Long Short-Term Memory) and SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), utilizing secondary data from April 2021 to April 2024 with a total of 36 monthly observations. The dependent variable is sales value, while the exogenous variables include spend per buyer, product penetration, promo % of value, the number of stores selling, and market share. The results indicate that the LSTM model has higher accuracy in predicting sales value compared to the SARIMAX model, with a lower Mean Absolute Percentage Error (MAPE) for most samples. Correlation analysis reveals that the variables number of stores selling and product penetration significantly influence sales value in the LSTM model, whereas SARIMAX excels in capturing seasonal patterns but has a higher MAPE. This study recommends using the LSTM model for complex and non-stationary time series data, while SARIMAX is more suitable for data with strong seasonal components. Model selection should consider the characteristics of the data and the objectives of the analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rebala, Gopinath
"Just like electricity, Machine Learning will revolutionize our life in many ways-some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with."
Switzerland: Springer Nature, 2019
e20506268
eBooks  Universitas Indonesia Library
cover
Aulia Rahman
"Aktivitas produksi dan ekspor komoditas kelapa sawit terus mengalami ekspansi dan peningkatan. Indonesia memiliki perkebunan kelapa sawit dengan luas mencapai 12.761.586 Hektar. menjadikan Indonesia sebagai salah satu penghasil CPO (Crude Palm Oil) terbesar di dunia. Keberhasilan produksi dari kelapa sawit tidak terlepas dari kegiatan perencanaan dan pengawasan sehingga diperlukan pemantauan secara cepat dan efektif. Penelitian ini dilakukan dengan tujuan untuk mengetahui karakteristik dan pola persebaran umur kelapa sawit berdasarkan nilai backscatter pada citra radar Sentinel-1. Data berupa citra radar Sentinel-1 digunakakan untuk dapat melakukan estimasi terhadap umur kelapa sawit berdasarkan nilai backscatter menggunakan pendekatan machine learning. Hasil pemodelan menunjukan bahwa tren nilai backscatter terhadap umur kelapa sawit memiliki karakter berbanding lurus dengan umur kelapa sawit. Estimasi umur kelapa sawit berdasarkan nilai backscatter pada Sentinel-1 GRD menghasilkan 3 kelas umur kelapa sawit dengan tingkat overall accuracy sebesar 93.3% pada anlisis yang dilakukan secara Single Time, sedangkan pada analisis time series diperoleh nilai overall accuracy sebesar 94.5% Hasil menunjukkan bahwa kelas umur dewasa memiliki nilai z score sebesar -4.190963 dengan pola persebaran clustered (mengelompok), kelas umur taruna dengan z score -8.388942 berpola clustered (mengelompok), dan kelas umur remaja dengan perolehan nilai z score 7.801667 dengan pola persebaran dispersed (seragam).

Production and export activities of palm oil commodities continue to expand and increase. Indonesia has oil palm plantations with an area of ​​12,761,586 hectares. making Indonesia one of the largest CPO (Crude Palm Oil) producers in the world. The success of production from oil palm cannot be separated from planning and monitoring activities so that it is necessary to monitor quickly and effectively. This research was conducted with the aim of knowing the characteristics and patterns of age distribution of oil palms based on the backscatter value on Sentinel-1 radar images. Data in the form of Sentinel-1 radar images are used to estimate the age of oil palms based on the backscatter value using a machine learning approach. The modeling results show that the trend of the backscatter value of the age of the oil palm has a character that is directly proportional to the age of the oil palm. Oil palm age estimation based on the backscatter value on Sentinel-1 GRD resulted in 3 oil palm age classes with an overall accuracy rate of 93.3% in the Single Time analysis, while the time series analysis obtained an overall accuracy value of 94.5%. adults have a z score of -4.190963 with a clustered distribution pattern, the cadet age class with a z score of -8.388942 with a clustered pattern, and the adolescent age class with a z score of 7.801667 with a dispersed distribution pattern."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fernanda Hartoyo
"Bejana tekan merupakan peralatan yang sebagai penampung fluida cair maupun gas dengan temperatur yang memiliki perbedaan dengan lingkungan yang ada di sekitarnya yang memiliki kemungkinan kegagalan yang tinggi yang dapat berpengaruh pada banyak faktor. Kegagalan bejana tekan dapat disebabkan karena adanya fenomena korosi seragam yang menyebabkan keluarnya fluida berbahaya dari peralatan yang memiliki tekanan karena adanya penipisan pada dinding bejana tekan. Hal ini dapat dihindari dengan melakukan inspeksi menggunakan risk-based inspection (RBI) yang mampu meningkatkan keamanan bejana tekan berbasis risiko yang dilakukan pada suatu peralatan berdasarkan prioritas risiko yang mempermudah dalam melakukan inspeksi dengan memperhatikan Probability of Failure dan Consequence of Failure. Salah satu metode untuk menganalisis risiko pada bejana tekan adalah dengan menggunakan metode pembelajaran mesin berbasis deep learning yang akan mengembangkan model penilaian risiko kegagalan bejana tekan minyak dan gas akibat korosi seragam yang dapat mempersingkat waktu, meningkatkan akurasi, efisien dalam melakukan pengolahan data, serta lebih lebih hemat biaya dengan menawarkan akurasi perhitungan yang tinggi. Penelitian menghasilkan program prediksi risiko bejana tekan dengan menggunakan klasifikasi pembelajaran mesin berbasis deep learning untuk memprediksi kegagalan pada peralatan bejana tekan akibat korosi seragam dengan menggunakan metode Risk Based Inspection dengan beberapa parameter model seperti random state senilai 25, learning rate sebesar 0.001, dengan layer berjumlah 3 dan dense 64,32,16, test size sebesar 20% dan batch size sebesar 32, dan epoch dengan nilai 150 menghasilkan akurasi model sebesar 93% yang didapatkan dari validasi confusion matrix. Nilai akurasi 93% bersumber dari 300 data yang didapatkan dari pembuatan dataset dengan berlandaskan standard API RBI 581.

A pressure vessel is an equipment that acts as a container for a liquid or gas with a different temperature from the surrounding environment, a high probability of failure, which can affect many factors. Pressure vessel failure can be caused by uniform corrosion, causing the dangerous liquid to be discharged from the pressure vessel due to thinning the pressure vessel wall. Pressure vessel failure can prevent failure by performing Risk Based Inspection (RBI), improving the safety and reliability of pressure vessels based on the risk performed on the equipment are based on risk priority. RBI facilitates the execution of tests that consider the probability of failure and the consequences of failure. One risk analysis method in pressure vessels is to use deep learning based machine learning to develop a failure risk assessment of pressure vessels due to uniform corrosion. This method can shorten the time, increase accuracy, be efficient in data processing, and be more cost-effective by offering high calculation accuracy. In this study, a risk prediction program of a pressure vessel is completed using a deep learning based machine learning classification to predict failure of pressure vessel using the Risk based Inspection method. This program which obtained the following model parameters such as random state of 25, a learning rate of 0.001, with three layers and dense 64,32,16, test size of 20% and batch size of 32, and an epoch with a value of 150, resulted in a model accuracy of 93% obtained from the validation of the confusion matrix. Program with accuracy of 93% comes from 300 dataset based on the RBI 581 API standard."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Helmi Qosim
"ABSTRAK
Synthesis loop merupakan salah satu sistem kritis di pabrik amoniak. Oleh karena itu, ada urgensi untuk menjaga reliability dan availability pada sistem ini. Sebagian besar peristiwa shutdown di pabrik amoniak terjadi tiba-tiba setelah alarm tercapai. Jadi, perlu ada sistem deteksi dini untuk memastikan masalah anomali ditangkap oleh operator sebelum menyentuh set point alarm. Implementasi algoritma machine learning dalam membuat model deteksi potensi kegagalan telah digunakan di berbagai industri dan objek sebagai penelitian. Algoritma yang digunakan adalah classifier dasar dan ensemble untuk membandingkan algoritma mana yang menghasilkan hasil klasifikasi terbaik. Penelitian ini dapat memberikan ide dan perspektif baru ke dalam industri pabrik amoniak untuk mencegah terjadinya shutdown yang tidak terjadwal dengan memanfaatkan data menggunakan algoritma machine learning.

ABSTRACT
Synthesis loop is one of the critical systems in ammonia plant. Therefore, there is urgency for maintaining the reliability and availability of this system. Most of the shutdown events occur suddenly after the alarm is reached. So, there needs to be an early detection system to ensure anomaly problem captured by the operator before
touching the alarm settings. The implementation of machine learning algorithms in making fault detection models has been used in various industries and objects. The algorithm used is the basic and ensemble classifier to compare which algorithms generate the best classification results. This research can provide a new idea and perspective into ammonia plant industry to prevent unscheduled shutdown by utilizing
data using machine learning algorithm."
Depok: Fakultas Teknik Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Iryanti Djaja
"Budidaya udang vaname (Litopenaeus vannamei) sangat diminati sehingga permintaan udang ini meningkat setiap tahunnya. Masalah terberat para petambak adalah kegagalan panen yang berakibat kepada keberlangsungan usaha mereka. Perlu adanya usaha perbaikan untuk meningkatkan keberhasilan panen. Penelitian ini bertujuan untuk lebih menggali mengenai penggunaan machine learning dalam prediksi hasil panen dari data kualitas air. Hasil prediksi ini selanjutnya dipakai dan digunakan dalam proses bisnis sehingga dapat meningkatkan produktivitas. Analisis yang digunakan pada penelitian ini adalah analisis kuantitatif dan kualitatif serta perbaikan proses bisnis. Analisis kuantitatif dengan metode big data dan machine learning. Model yang dipakai adalah k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Analisis kualitatif dilakukan dengan observasi dan interview untuk memperbaiki proses bisnis. Proses bisnis diperbaiki mengikuti BPM Lifecycle dengan memasukan hasil analisis kuantitatif. Dari penelitian ini didapatkan bahwa prediksi machine learning dengan model Decision Tree dari variabel rasio bakteri merugikan dan NH4+ memberikan akurasi tertinggi mencapai 96%. Setelah didapatkan model dan variabel dengan akurasi tertinggi, penelitian ini juga melakukan penerapan ke dalam proses bisnis dengan pendekatan BPM Lifecycle sehingga hasil tersebut dapat diimplementasi dan memberikan hasil yang lebih produktif.

Interest in Vaname shrimp (Litopenaeus vannamei) farming is growing every year. The biggest problem for shrimp farming was the unsuccessful harvest that affected their business sustainability. So, there should be an improvement made to increase the chance of a successful harvest and its productivity. Past research mentioned that vaname shrimp harvest result can be predicted by machine learning approach from water quality data. It gave good accuracy and can be used to have faster decision making. The objective of this research is to deep dive into the utilization of machine learning to predict the successful harvest from water quality data. The predicted result will be utilized in the business process to improve productivity. Analysis that used at this research are quantitative and qualitative with business process improvement. Quantitative analysis used big data methode and machine learning. Models that have been applied are k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Data that is used for analysis are pH, salinity, NOx, NH4+, and harmful bacteria index. Qualitative analysis was applied by observation and interview with the focus to improve business process. Business processes will be improved using BPM Lifecycle with the utilization of quantitative result. This research showed that prediction machine learning with Decision Tree model from harmful bacteria index and NH4+ giving the best accuracy until 96%. The next step was utilizing the quantitative result at the business process with BPM Lifecycle approach so the result can be implemented and gave more productive result."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kinanthy Dwi Pangesty
"Manajemen rumah sakit yang baik dapat meningkatkan kualitas pelayanan medis. Rumah sakit merupakan institusi pelayanan kesehatan yang menyelenggarakan pelayanan kesehatan perorangan secara paripurna yang menyediakan pelayanan rawat inap, rawat jalan, dan gawat darurat. Rumah sakit diharuskan untuk mengelola berbagai jenis sumber daya untuk meningkatkan efisiensi manajemen secara keseluruhan, seperti mengelola jadwal tim dan staf medis, manajemen tempat tidur, dan jalur perawatan. Penyakit jantung merupakan penyakit penyebab kematian tertinggi di dunia yang sangat membutuhkan penanganan medis dengan segera. Penyakit jantung membutuhkan salah satu pelayanan pada rumah sakit yaitu pelayanan rawat inap. Pelayanan rawat inap melibatkan sumber daya yang berkaitan dengan biaya dan waktu. Dengan adanya prediksi durasi rawat inap pada pasien penyakit jantung akan membantu pihak pasien dalam menyiapkan kebutuhan yang diperlukan serta pihak rumah sakit dalam manajemen tempat tidur rawat inap pasien penyakit jantung. Pada penelitian ini, dilakukan prediksi durasi rawat inap pasien penyakit jantung dengan menggunakan pendekatan ensemble machine learning dengan tujuan untuk mendapatkan metode terbaik dalam memprediksi dengan membandingkan dua metode ensemble machine learning yaitu random forest dan extreme gradient boosting, serta metode logistic regression sebagai baseline. Kemudian tujuan lainnya yaitu untuk mengetahui faktor yang paling berpengaruh terhadap durasi rawat inap. Ketiga metode yang digunakan merupakan bagian dari supervised machine learning. Selain itu, dilakukan optimasi hyperparameter untuk meningkatkan performa dari hasil model prediksi. Setelah membuat model prediksi dan melakukan evaluasi terhadap model, didapatkan metode terbaik yaitu random forest dengan optimasi hyperparameter yang mendapat hasil akurasi sebesar 83,9% dan nilai AUROC sebesar 92,86% serta faktor-faktor yang paling berpengaruh terhadap durasi rawat inap antara lain jumlah limfosit total, urea, trombosit, hemoglobin, glukosa, usia, kreatinin, peptida natriuretik otak, fraksi ejeksi dan hipertensi.

Good hospital management can improve the quality of medical services. The hospital is a health service institution that provides complete individual health services in inpatient, outpatient, and emergency services. Hospitals are required to manage various types of resources to improve overall management efficiency, such as managing medical team and staff schedules, bed management, and clinical pathways. Heart disease is the leading cause of death in the world and requires immediate medical treatment. Heart disease requires one of the services at the hospital, namely inpatient services. Inpatient services involve resources related to cost and time. Predicting the duration of hospitalization in heart disease patients will help the patient prepare for the necessary needs and the hospital in managing inpatient beds for heart disease patients. In this study, the prediction of the duration of hospitalization for heart disease patients using an ensemble machine learning approach was carried out with the aim of getting the best method of predicting by comparing two ensemble machine learning methods, namely random forest and extreme gradient boosting, as well as the logistic regression method as a baseline. Then another goal is to find out the most influential factors on the duration of hospitalization. The three methods used are part of supervised machine learning. In addition, hyperparameter optimization is carried out to improve the performance of the prediction model results. After making a predictive model and evaluating the model, the best method was obtained, namely random forest with hyperparameter optimization which obtained an accuracy of 83.9% and an AUROC value of 92.86% and the factors that most influence the duration of hospitalization include the number of total lymphocytes, urea, platelets, hemoglobin, glucose, age, creatinine, brain natriuretic peptide, ejection fraction and hypertension.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dary Rizki
"Inclining test merupakan proses untuk mengetahui titik berat kapal dengan memindahkan beban uji di atas kapal. Tujuan dari Inclining test pada kapal adalah untuk menentukan tinggi titik berat kapal dan metasentra kapal, yang menjadi dasar perhitungan stabilitas kapal dalam berbagai kondisi pemuatan (load case). Percobaan inclining test umumnya dilakukan dengan dua metode, yaitu langsung di kapal setelah pembangunan selesai dan melalui simulasi komputasi. Namun, metode ini seringkali memerlukan persiapan yang cukup lama. Dengan berkembangnya otomasi dan teknologi, penelitian ini bertujuan untuk mengoptimalkan pengukuran Inclining test dengan lebih cepat dan akurat tanpa menunggu kapal selesai dibangun. Pendekatan yang diambil dalam penelitian ini adalah dengan membuat model Inclining test kapal menggunakan metode Machine Learning. Machine Learning digunakan untuk mempelajari data yang dimasukkan ke dalam sistem, dan memungkinkan mesin menghasilkan output dari percobaan inclining test seperti jika dilakukan langsung di kapal. Penelitian dilakukann dengan menggunakan Google Spreadsheet untuk menyimpan data- data inclining test yang pernah dilakukan, Github sebagai tempat yang digunakan untuk menyiimpan kode pemograman mesin, dan Streamlit sebagai interface untuk data baru yang akan dimasukan, menjalankan kode mesin yang ada di Github dan memperlihatkan hasil prediksi yang dilakukan oleh mesin. Kemudian akan dilakukan pengujian tools dengan 2 tahap dimana mesin akan memprediksi data yang sudah pernah dipelajari dan data baru. Dari penelitian didapatkan bahwa mesin pada saat ini mampu memprediksi data yang pernah dipelajari dengan error MSE sebesar 0.521 namun masih kesulitan memprediksi data baru dengan error mse sebesar 16,88. Mesin menyimpulkan bahwa momen beban merupakan faktor terbesar dalam mempengaruhi kemiringan pada pegujian inclining test kapal.

The Inclining test is a process to determine the center of gravity of a ship by shifting a test load onto the ship. The purpose of the Inclining test on a ship is to establish the height of the ship's center of gravity and metacenter, which serves as the basis for calculating the ship's stability under various loading conditions (load cases). Inclining test experiments are generally conducted using two methods: directly on the ship after construction is completed and through computational simulations. However, these methods often require considerable preparation time. With the advancement of automation and technology, this research aims to optimize Inclining test measurements more quickly and accurately without waiting for the ship's construction to finish. The approach taken in this study involves creating a model of the ship's Inclining test using the Machine Learning method. Machine Learning is utilized to learn from the data entered into the system, allowing the machine to generate output from Inclining test experiments as if conducted directly on the ship. The research is conducted using Google Spreadsheet to store previously conducted Inclining test data, Github as a repository for machine programming code, and Streamlit as an interface for new data entry. It runs the machine code stored in Github and displays the prediction results. The testing of tools is performed in two stages, where the machine predicts data that has been previously learned and new data. From the research, it is found that the machine is currently able to predict previously learned data with an MSE error of 0.521 but faces difficulties in predicting new data with an MSE error of 16,88. Also machine concluded that Weight momen is the biggest factor during ship inclining test."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>