Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 181127 dokumen yang sesuai dengan query
cover
Yovan Yudhistira Widyananto
"Keamanan privasi data dan informasi dalam internet sering menjadi topik pembahasan dari waktu ke waktu, hal ini dikarenakan metode penyerangan siber selalu berevolusi menyesuaikan dengan struktur keamanan yang ada, menjadikan bidang keamanan siber menjadi bagaikan kompetisi untuk selalu lebih dahulu dari lawannya. Salah satu contoh implementasi keamanan siber merupakan Intrusion Detection System, dikenal juga dengan IDS. IDS dapat membantu menjaga sebuah jaringan dengan mendeteksi jika ada tanda-tanda penyerangan, namun dengan ini saja tidak cukup untuk memaksimalkan keamanan sebuah jaringan. Dari dasar IDS ini, sebuah proyek mencoba mengembangkan konsepnya dan membuat struktur besar, dan berhasil diciptakan proyek Mata Elang. Struktur Mata Elang dapat menjadi perantara antara internet dengan jaringan yang dilindunginya, dan ketika terjadi serangan, aktivitas tersebut akan dideteksi, ditahan, dan diproses oleh Mata Elang. Sistem deteksi Mata Elang bergantung kepada framework Snort. Sayangnya, Snort tidak memiliki kemampuan untuk beradaptasi di luar dari konfigurasi yang telah diberikan kepadanya. Dalam penelitian ini, penulis akan mengimplementasikan Machine Learning untuk meningkatkan keamanan yang diberikan pada proyek Mata Elang, spesifiknya pada sensornya yang menggunakan Snort. Setelah segala proses perancangan, pembuatan, dan pengujian telah dilakukan, hasil akhir yang didapatkan dari sistem Machine Learning merupakan sistem prediksi yang memuaskan untuk memprediksi kategori serangan bahkan dengan dukungan data yang lemah, namun kemampuan dari aturan Snort yang dihasilkan masih belum diuji dengan matang.

The talk about the security of private data and information will continue to be a relevant topic because of the nature of the concept. Cyberattacks have always been adapting according to the technology and structure that exists at the time, and so cybersecurity will continue to be a competition for gaining the advantage against their contrarian. One of the prime examples in cybersecurity implementation is Intrustion Detection Systems, also known as the shortened term, IDS. IDS can help guard a network by detecting different kinds of anomalies or attacks, although this alone wouldn’t be enough to maximize the level of proper security necessary for a whole network. Under the basic concept of IDS, a project attempts to develop an IDS and create a larger structure. The project was successfully implemented and now titled as Mata Elang. Mata Elang’s structure is an intermediary between an internet connection and the network it is connected to, and when an attack happens, those activities will be detected, interrupted, and then processed by Mata Elang. Mata Elang’s detection system completely relies on the framework Snort. Unfortunately, Snort does not have the capabilities to adapt outside the configurations that has been given to it. In this research, the writer will implement Machine Learning to further increase the security provided by Mata Elang, specifically on the sensors that uses Snort. After every step of the planning, making, and testing has been done the final result of the product was a Machine Learning system that has a satisfactory performance in categorizing the attacks, even with a weak supporting data, however the performance of the snort rules generated by it has not been tested thoroughly.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Fatkhul Amin
"Event Extraction merupakan salah satu tugas dalam sistem ekstraksi informasi yang bertujuan untuk menemukan kumpulan informasi event dari suatu dokumen. Informasi tersebut dapat berupa informasi pihak-pihak yang terlibat, tempat kejadian, waktu, dan segala informasi yang terkait dengan event. Penelitian ini bertujuan untuk melakukan proses ekstraksi event (event pertemuan) pada teks berbahasa Indonesia. Dari event pertemuan tersebut, informasi yang dicari adalah informasi pihak yang terlibat (person), tempat (location), serta waktu (time) terjadinya event. Ekstraksi dilakukan dengan menggunakan pendekatan machine learning. Sedangkan metode machine learning yang digunakan adalah association rules, decision tree, dan neural networks. Penelitian bertujuan untuk melihat perbandingan kinerja ketiga metode tersebut terhadap ekstraksi event. Uji coba dilakukan pada artikel-artikel media massa online dari Kompas, Jawa Pos, Republika, dan Sinar Harapan. Pada ekstraksi event, diketahui bahwa metode decision tree menunjukkan kinerja yang lebih baik dibandingkan metode association rules dan metode neural networks dengan F-measure mencapai 83,95%. Metode association rules menunjukkan kinerja yang lebih baik dibandingkan dengan metode neural networks dengan F-measure masing-masing sebesar 82,41% dan 81,57%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hakim Amarullah
"Proses training model membutuhkan sumber daya komputasi yang akan terus meningkat seiring dengan bertambahnya jumlah data dan jumlah iterasi yang telah dicapai. Hal ini dapat menimbulkan masalah ketika proses training model dilakukan pada lingkungan komputasi yang berbagi sumber daya seperti pada infrastruktur komputasi berbasis klaster. Masalah yang ditimbulkan terutama terkait dengan efisiensi, konkurensi, dan tingkat utilisasi sumber daya komputasi. Persoalan efisiensi muncul ketika sumber daya komputasi telah tersedia, tetapi belum mencukupi untuk kebutuhan job pada antrian ter- atas. Akibatnya sumber daya komputasi tersebut menganggur. Penggunaan sumber daya tersebut menjadi tidak efisien karena terdapat kemungkinan sumber daya tersebut cukup untuk mengeksekusi job lain pada antrian. Selain itu, pada cluster computing juga mem- butuhkan sistem monitoring untuk mengawasi dan menganalisis penggunaan sumber daya pada klaster. Penelitian ini bertujuan untuk menemukan resource manager yang sesuai untuk digunakan pada klaster komputasi yang memiliki GPU agar dapat meningkatkan efisiensi, implementasi sistem monitoring yang dapat membantu analisis penggunaan sumber daya sekaligus monitoring proses komputasi yang sedang dijalankan pada klaster, dan melayani inference untuk model machine learning. Penelitian dilakukan dengan cara menjalankan eksperimen penggunaan Slurm dan Kubernetes. Hasil yang diperoleh adalah Slurm dapat memenuhi kebutuhan untuk job scheduling dan mengatur penggunaan GPU dan resources lainnya pada klaster dapat digunakan oleh banyak pengguna sekaligus. Sedangkan untuk sistem monitoring, sistem yang dipilih adalah Prometheus, Grafana, dan Open OnDemand. Sementara itu, sistem yang digunakan untuk inference model adalah Flask dan Docker.

The amount of computational power needed for the model training process will keep rising along with the volume of data and the number of successful iterations. When the model training process is conducted in computing environments that share resources, such as on cluster-based computing infrastructure, this might lead to issues. Efficiency, competition, and the level of resource use are the three key issues discussed.Efficiency problems occur when there are already computing resources available, yet they are insufficient to meet the demands of high-level workloads. The power of the machine is subsequently wasted. The utilization of such resources becomes inefficient because it’s possible that they would be adequate to complete other tasks on the front lines. A monitoring system is also necessary for cluster computing in order to track and assess how resources are used on clusters. The project seeks to set up a monitoring system that can assist in analyzing the usage of resources while monitoring the com- puting processes running on the cluster and locate a suitable resource manager to be utilized on a computing cluster that has a GPU in order to increase efficiency, also serve inference model in production. Slurm and Kubernetes experiments were used to conduct the investigation. The findings show that Slurm can handle the demands of job scheduling, manage the utilization of GPUs, and allow for concurrent use of other cluster resources. Prometheus, Grafana, and Open OnDemand are the chosen moni- toring systems. Else, inference model is using Flask and Docker as its system constructor.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Anis Abdul Aziz
"Proses training model membutuhkan sumber daya komputasi yang akan terus meningkat seiring dengan bertambahnya jumlah data dan jumlah iterasi yang telah dicapai. Hal ini dapat menimbulkan masalah ketika proses training model dilakukan pada lingkungan komputasi yang berbagi sumber daya seperti pada infrastruktur komputasi berbasis klaster. Masalah yang ditimbulkan terutama terkait dengan efisiensi, konkurensi, dan tingkat utilisasi sumber daya komputasi. Persoalan efisiensi muncul ketika sumber daya komputasi telah tersedia, tetapi belum mencukupi untuk kebutuhan job pada antrian ter- atas. Akibatnya sumber daya komputasi tersebut menganggur. Penggunaan sumber daya tersebut menjadi tidak efisien karena terdapat kemungkinan sumber daya tersebut cukup untuk mengeksekusi job lain pada antrian. Selain itu, pada cluster computing juga mem- butuhkan sistem monitoring untuk mengawasi dan menganalisis penggunaan sumber daya pada klaster. Penelitian ini bertujuan untuk menemukan resource manager yang sesuai untuk digunakan pada klaster komputasi yang memiliki GPU agar dapat meningkatkan efisiensi, implementasi sistem monitoring yang dapat membantu analisis penggunaan sumber daya sekaligus monitoring proses komputasi yang sedang dijalankan pada klaster, dan melayani inference untuk model machine learning. Penelitian dilakukan dengan cara menjalankan eksperimen penggunaan Slurm dan Kubernetes. Hasil yang diperoleh adalah Slurm dapat memenuhi kebutuhan untuk job scheduling dan mengatur penggunaan GPU dan resources lainnya pada klaster dapat digunakan oleh banyak pengguna sekaligus. Sedangkan untuk sistem monitoring, sistem yang dipilih adalah Prometheus, Grafana, dan Open OnDemand. Sementara itu, sistem yang digunakan untuk inference model adalah Flask dan Docker.

The amount of computational power needed for the model training process will keep rising along with the volume of data and the number of successful iterations. When the model training process is conducted in computing environments that share resources, such as on cluster-based computing infrastructure, this might lead to issues. Efficiency, competition, and the level of resource use are the three key issues discussed.Efficiency problems occur when there are already computing resources available, yet they are insufficient to meet the demands of high-level workloads. The power of the machine is subsequently wasted. The utilization of such resources becomes inefficient because it’s possible that they would be adequate to complete other tasks on the front lines. A monitoring system is also necessary for cluster computing in order to track and assess how resources are used on clusters. The project seeks to set up a monitoring system that can assist in analyzing the usage of resources while monitoring the com- puting processes running on the cluster and locate a suitable resource manager to be utilized on a computing cluster that has a GPU in order to increase efficiency, also serve inference model in production. Slurm and Kubernetes experiments were used to conduct the investigation. The findings show that Slurm can handle the demands of job scheduling, manage the utilization of GPUs, and allow for concurrent use of other cluster resources. Prometheus, Grafana, and Open OnDemand are the chosen moni- toring systems. Else, inference model is using Flask and Docker as its system constructor.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rebala, Gopinath
"Just like electricity, Machine Learning will revolutionize our life in many ways-some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with."
Switzerland: Springer Nature, 2019
e20506268
eBooks  Universitas Indonesia Library
cover
Muhammad Fauzul Akbar
"Large Language Model (LLM) generatif merupakan jenis model machine learning yang dapat diaplikasikan dalam industri jurnalisme, khususnya dalam proses pembuatan dan validasi berita. Namun, LLM memerlukan sumber daya yang besar untuk operasionalnya serta membutuhkan waktu proses inferensi yang relatif lama. Penelitian ini bertujuan untuk mengembangkan layanan web machine learning yang memanfaatkan LLM generatif untuk proses pembuatan dan validasi berita. Tujuan lainnya adalah menciptakan sistem dengan mekanisme manajemen beban yang efisien untuk meminimalkan waktu inferensi. Pengembangan melibatkan beberapa tahap, yakni analisis kebutuhan stakeholder, perancangan desain dan arsitektur, implementasi, serta evaluasi. Dalam implementasi layanan web machine learning, pengembangan ini berfokus pada manajemen GPU untuk meningkatkan kecepatan proses inferensi LLM. Selain itu, dilakukan implementasi design pattern untuk meningkatkan skalabilitas dalam penambahan model machine learning. Untuk manajemen beban, dikembangkan dua mekanisme, yaitu load balancer dan scheduler. Implementasi load balancer memanfaatkan NGINX dengan metode round-robin. Sedangkan untuk scheduler, digunakan RabbitMQ sebagai antrean, dengan publisher menerima permintaan dan subscriber mendistribusikan permintaan ke layanan yang tersedia. Berdasarkan API Test, layanan ini berhasil melewati uji fungsionalitas dengan waktu respons API sekitar 1-2 menit per permintaan. Evaluasi performa pada kedua mekanisme manajemen beban menunjukkan tingkat keberhasilan 100%, dengan waktu respon rata-rata meningkat seiring dengan peningkatan jumlah request per detik. Pengelolaan beban dengan load balancer menghasilkan waktu respon yang lebih cepat, sementara pengelolaan beban dengan scheduler menghasilkan mekanisme yang lebih efektif pada proses koneksi asinkron.

Generative Large Language Model (LLM) is a type of machine learning model that can be applied in the journalism industry, especially in the process of news generation and validation. However, LLM requires large resources for its operation and requires a relatively long inference process time. This research aims to develop a machine learning web service that utilizes generative LLM for news generation and validation. Another goal is to create a system with an efficient load management mechanism to minimize inference time. The development involves several stages, namely stakeholder needs analysis, design and architecture, implementation, and evaluation. In the implementation of machine learning web services, this development focuses on GPU management to increase the speed of the LLM inference process. In addition, the implementation of design patterns is done to improve scalability in adding machine learning models. For load management, two mechanisms are developed: load balancer and scheduler. The load balancer implementation utilizes NGINX with the round-robin method. As for the scheduler, RabbitMQ is used as a queue, with the publisher receiving requests and the subscriber distributing requests to available services. Based on the API Test, the service successfully passed the functionality test with an API response time of about 1-2 minutes per request. Performance evaluation on both load management mechanisms showed a 100% success rate, with the average response time increasing as the number of requests per second increased. The use of a load balancer results in faster response times, while load management with a scheduler results in a more effective mechanism for asynchronous connection processes. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Henry Prayoga
"Penelitian ini menganalisis akurasi peramalan permintaan produk barang konsumsi cepat (FMCG) menggunakan model Machine Learning, yaitu LSTM (Long Short-Term Memory) dan SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), dengan data sekunder dari April 2021 hingga April 2024 yang terdiri dari 36 observasi bulanan. Variabel dependen adalah total penjualan, sementara variabel eksogen mencakup pengeluaran per kapita, adopsi produk, proporsi penjualan dari promosi, jumlah toko yang menjual produk, dan pangsa pasar produk. Hasil menunjukkan model LSTM memiliki akurasi lebih tinggi dalam memprediksi nilai penjualan dibandingkan SARIMAX, dengan nilai Mean Absolute Percentage Error (MAPE) yang lebih rendah pada sebagian besar sampel. Analisis korelasi mengungkapkan variabel jumlah toko yang menjual produk dan adopsi produk berpengaruh signifikan terhadap nilai penjualan dalam model LSTM, sedangkan SARIMAX unggul dalam menangkap pola musiman namun memiliki MAPE lebih tinggi. Penelitian ini menyarankan penggunaan model LSTM untuk data time series yang kompleks dan tidak stasioner, sementara SARIMAX lebih cocok untuk data dengan komponen musiman yang kuat. Pemilihan model harus mempertimbangkan karakteristik data dan tujuan analisis.

This study analyzes the forecasting accuracy of fast-moving consumer goods (FMCG) demand using Machine Learning models, namely LSTM (Long Short-Term Memory) and SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), utilizing secondary data from April 2021 to April 2024 with a total of 36 monthly observations. The dependent variable is sales value, while the exogenous variables include spend per buyer, product penetration, promo % of value, the number of stores selling, and market share. The results indicate that the LSTM model has higher accuracy in predicting sales value compared to the SARIMAX model, with a lower Mean Absolute Percentage Error (MAPE) for most samples. Correlation analysis reveals that the variables number of stores selling and product penetration significantly influence sales value in the LSTM model, whereas SARIMAX excels in capturing seasonal patterns but has a higher MAPE. This study recommends using the LSTM model for complex and non-stationary time series data, while SARIMAX is more suitable for data with strong seasonal components. Model selection should consider the characteristics of the data and the objectives of the analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richie Ghifari
"Rancang campur beton merupakan proses bertahap dan kompleks untuk mencoba menemukan komposisi bahan terbaik guna menghasilkan beton dengan performa terbaik. Kuat tekan beton merupakan sifat terpenting dalam kualitas beton dibandingkan sifat-sifat lain. Dalam proses pembuatannya, banyak variabel terutama jumlah komposisi material penyusun yang dapat memengaruhi kuat tekan beton. Terdapat beberapa metode konvensional dalam memprediksi beton yang terkadang memberikan hasil prediksi lebih atau kurang dari kuat tekan yang ditargetkan. Diperlukan metode yang akurat dalam memprediksi kuat tekan beton agar dapat memberikan keuntungan secara signifikan terhadap penggunaan bahan. Oleh karena itu, penelitian ini menggunakan Deep Neural Network (DNN) sebagai subbidang dari Machine Learning (ML) dan Artificial Intelligence (AI), untuk memprediksi kuat tekan beton berdasarkan komposisi campuran dan properti materialnya. Penelitian ini menghasilkan formula matematika berupa persamaan yang dihasilkan dari model DNN terbaik dengan melihat aspek error model dan grafik model loss. Terdapat total 2048 model yang dianalisis dengan variasi jumlah variabel input (feature) yang berbeda-beda. Model 280 pada kasus 1 dan model 23 pada kasus 5 merupakan model terbaik yang dihasilkan penelitian ini, dengan masing-masing nilai error model 43,8028 dan 5778,5850 untuk Mean Squared Error (MSE) serta 5,0073 dan 59,8225 Maen Absolute Error (MAE).

Concrete mix design is a gradual and complex process of trying to find the best ingredient composition to produce the best performing concrete. The compressive strength of concrete is the most important property in concrete quality compared to other properties. In the manufacturing process, many variables, especially the amount of material composition, can affect the compressive strength of concrete. There are several conventional methods of predicting concrete that sometimes give predictive results more or less than the targeted compressive strength. An accurate method of predicting the compressive strength of concrete is needed in order to significantly benefit the use of materials. Therefore, this research utilizes Deep Neural Network (DNN), a subfield of Machine Learning (ML) and Artificial Intelligence (AI), to predict the compressive strength of concrete based on its mix composition and material properties. This research produces mathematical formulas in the form of equations generated from the best DNN model by looking at the aspects of model error and model loss graphs. There are a total of 2048 models analyzed with different variations in the number of input variables (features). Model 280 in case 1 and model 23 in case 5 are the best models produced by this study, with model error values of 43.8028 and 5778.5850 for Mean Squared Error (MSE) and 5.0073 and 59.8225 Maen Absolute Error (MAE), respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nagisa Eremia Anju
"Tenaga kerja kesehatan pada masa pandemi bekerja sebagai garda terdepan yang memiliki resiko tertinggi tertular virus corona. Sampai pada hari ini, perawatan dan pemeriksaan kondisi vital pasien COVID-19 masih banyak dilakukan dengan kontak langsung minimal sebanyak empat kali dalam sehari. Hal ini berisiko meningkatkan penyebaran virus hingga menurunkan jumlah tenaga kerja kesehatan. Sampai pada saat ini, hampir seluruh rumah sakit masih menggunakan sphygmomanometer tradisional dengan cuff yang membutuhkan bantuan tenaga medis ataupun tanpa bantuan, namun pengukuran dilakukan secara invasif. Oleh karena itu, dibutuhkan suatu alat yang dapat memonitor kondisi vital pasien tanpa kontak langsung terutama dalam mengukur tekanan darah dan bersifat noninvasif. Penelitian ini bertujuan untuk membuat suatu algoritma pengolahan sinyal plethysmography berbasis ekstraksi fitur dan machine learning untuk prediksi tekanan darah. Dengan menggunakan sensor MAX30102 dan ESP32, sinyal PPG yang didapat dari jari akan dilakukan pre-processing dengan menenerapkan baseline fitting, kemudian deteksi puncak, hingga empat fitur utama sinyal PPG, yaitu systolic peak, diastolic peak, dicrotic notch, dan foot dapat diekstrak. Data ekstraksi fitur sinyal PPG secara ­real-time ini digabungkan menjadi satu dataset dan dimasukkan ke dalam machine learning untuk diprediksi nilai tekanan darahnya. Evaluasi hasil prediksi tekanan darah menunjukkan nilai Mean Absolute Error yang kecil, yaitu 1,56/2,35 yang masih diterima oleh standar ISO 81060-2:2013 sehingga dapat dijadikan fundamental untuk sistem pengukuran tekanan darah noninvasif.

Health workers during the pandemic act as the frontliner who have the highest risk of contracting the coronavirus. Most of the treatment and examination of the vital condition of COVID-19 patients is carried out with direct contact at least four times a day. This increases the risk of virus spreading, moreover reducing the number of health workers. To date, almost all hospitals still require medical assistance to measure blood pressure using the traditional cuff sphygmomanometer or without assistance however, the measurements are carried out invasively. Therefore, a device that can monitor the patient's vital condition without direct contact, especially in measuring blood pressure and non-invasive is needed. This thesis aims to develop a plethysmography signal processing algorithm based on feature extraction and machine learning for blood pressure prediction. By using the MAX30102 and ESP32 sensors, the PPG signal obtained from the finger will be preprocessed by applying a baseline fitting and peak detection, thus the four main features of the PPG signal, namely systolic peak, diastolic peak, dicrotic notch, and foot can be extracted. This real-time PPG signal feature extraction data is then combined into a single dataset and by using machine learning, blood pressure values are predicted. Evaluation of the blood pressure predictions shows a small Mean Absolute Error value, 1.56/2.35 which meets the ISO 81060-2:2013 standard. Hence, the results demonstrate the applicability of the proposed algorithm in predicting blood pressure and can be developed as a noninvasive real-time blood pressure measurement system in the future.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ananda Fauzia Sabban
"Rumah menjadi tempat tinggal yang memiliki fungsi untuk memberikan rasa aman dan nyaman bagi penghuninya. Oleh sebab itu, pemilihan lokasi tempat tinggal menjadi penting, terutama bagi penduduk Jakarta, dimana Jakarta termasuk daerah rawan terhadap banjir. Banjir di Jakarta berdampak pada keamanan dan keselamatan hingga memberikan kerugian secara materil. Oleh karena itu, penelitian ini mengestimasikan property value harga rumah dengan mempertimbangkan lokasi tempat tinggal. Namun, penelitian ini juga akan menggunakan faktor penentu lokasi dalam pemilihan rumah lainnya, seperti atribut aksesibilitas dan atribut struktutal. Dalam pembuatan model estimasi ini akan menggunakan machine learning (ML) sebagai metodenya, yaitu Gradient Boosting Decision Trees (GBDT) dan Random Forest (RF), dengan optimasi Genetic Algorithm (GA) untuk meningkatkan kinerja model. Hasil penelitian ini menunjukkan GBDT dan RF memiliki performa sama baiknya dalam mengestimasi model property value rumah. Serta, penggunaan GA untuk meningkatkan kinerja model berhasil dengan meningkatnya nilai R2, serta menurunnya nilai MAPE dan RMSE. Penelitian ini juga melihat faktor – faktor yang berpengaruh terhadap model, dengan luas tanah dan luas bangunan menjadi faktor paling berpengaruh, yang diikuti oleh MRT, rumah sakit, pusat perbelanjaan, tol, SMP, dan lokasi rawan.

A home serves as a place of residence that provides a sense of safety and comfort for its occupants. Therefore, the selection of the location for a residence is crucial, especially for residents of Jakarta, as Jakarta is prone to flooding. Flooding in Jakarta impacts security, safety, and even material losses. Hence, this research aims to estimate the property value of houses by considering the location of the residence. Additionally, the research will incorporate other factors that influence housing selection, such as accessibility attributes and structural attributes. The estimation model will utilize machine learning (ML) techniques, specifically Gradient Boosting Decision Trees (GBDT) and Random Forest (RF), with Genetic Algorithm (GA) optimization to enhance the model's performance. The research findings indicate that both GBDT and RF perform equally well in estimating the property value model. Moreover, the use of GA to improve the model's performance is successful, as evidenced by an increase in the R2 value and a decrease in the MAPE and RMSE values. The research also examines the factors that influence the model, with land area and building area being the most influential factors, followed by proximity to the MRT, hospitals, shopping centres, toll roads, junior high schools, and flood-prone areas."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>