Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 94993 dokumen yang sesuai dengan query
cover
Leonard Chandra
"

Metode penyimpanan gas alam perlu dioptimalkan guna mencapai kapasitas adsorpsi dan desorpsi yang optimal namun tetap efektif dan aman. Salah satu teknologi yang menjanjikan untuk penyimpanan gas alam adalah Adsorbed Natural Gas (ANG). Teknologi ANG dapat dioptimalkan melalui pengembangan adsorben berbasis karbon aktif yang digunakan dalam silinder penyimpanan. Karbon aktif dapat diproduksi dari limbah cangkang kelapa sawit yang memiliki kandungan selulosa sebesar 29,7%, holoselulosa 47,7%, dan lignin 53,4%. Proses pembuatan karbon aktif dari limbah cangkang kelapa sawit melibatkan karbonisasi pada suhu 400 °C, diikuti oleh aktivasi menggunakan agen aktivator ZnCl2. Untuk meningkatkan luas permukaan karbon aktif, dilakukan aktivasi fisika tambahan pada suhu 850 °C selama 5 jam dengan aliran gas N2 sebesar 100 ml/menit. Karbon aktif yang dihasilkan kemudian dimodifikasi menggunakan bahan perekat termoplastik PVA dengan variasi konsentrasi 1% dan 2%. Karbon aktif dengan karakteristik terbaik adalah karbon aktif yang termodifikasi menggunakan PVA 2% dengan bilangan iodin sebesar 1393,74 mg/g dan luas permukaan spesifik (SBET) sebesar 1386,19 m2/g. Kapasitas adsorpsi gas metana oleh karbon aktif yang telah dimodifikasi dengan PVA 2% pada suhu 28 °C dan tekanan 9 bar mencapai 0,0573 kg/kg.


The storage method of natural gas needs to be optimized to achieve optimal adsorption and desorption capacities while ensuring effectiveness and safety. One promising technology for natural gas storage is Adsorbed Natural Gas (ANG). ANG technology can be optimized through the development of carbon-based adsorbents used in storage cylinders. Activated carbon can be produced from waste palm kernel shells, which contain 29.7% cellulose, 47.7% hemicellulose, and 53.4% lignin. The production process of activated carbon from palm kernel shell waste involves carbonization at a temperature of 400 °C, followed by activation using ZnCl2 as the activating agent. To increase the surface area of the activated carbon, additional physical activation is performed at a temperature of 850 °C for 5 hours with a nitrogen gas flow rate of 100 ml/minute. The resulting activated carbon is then modified using a thermoplastic binder, PVA, with concentrations of 1%, and 2%. The best-performing activated carbon is the one modified with 2% PVA, exhibiting an iodine number of 1393.74 mg/g and a specific surface area (SBET) of 1386.19 m2/g. The methane adsorption capacity of the modified activated carbon with 2% PVA at a temperature of 28 °C and a pressure of 9 bar reaches 0.0573 kg/kg.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Nursya`bani
"Gas alam merupakan bahan bakar bersih yang lebih ramah lingkungan dibandingkan dengan batubara dan minyak bumi. Salah satu teknologi yang dapat digunakan untuk menyimpan gas alam adalah adsorbed natural gas (ANG). ANG memanfaatkan kemampuan adsorpsi material adsorben seperti karbon aktif untuk menyimpan gas alam. Karbon aktif dibuat dengan menggunakan cangkang kelapa sawit melalui tahapan karbonisasi dan aktivasi. Karbonisasi dilakukan pada suhu 400 oC dan dilanjutkan dengan tahapan aktivasi untuk membuka pori. Aktivasi kimia dilakukan dengan larutan H3PO4, sementara aktivasi fisika dilakukan dengan menggunakan gas N2. Yield yang didapatkan pada penelitian ini adalah sebesar 27,56%. Untuk meningkatkan kemampuan adsorpsi, dilakukan juga impregnasi menggunakan MgO yang divariasikan pada konsentrasi 0,5% b/b, 1% b/b, dan 2% b/b. Karbon aktif dengan hasil terbaik adalah karbon aktif termodifikasi MgO 1% b/b dengan luas permukaan sebesar 1604,00 m2/g. Karbon aktif yang dihasilkan diuji kapasitasnya dalam menyimpan gas alam. Kapasitas adsorpsi gas alam terbesar didapatkan oleh karbon aktif termodifikasi MgO 1% b/b pada suhu 28 oC dan tekanan 9 bar yang mampu mencapai 0,027 kg/kg.

Natural gas is a cleaner fuel that is more environmentally friendly than coal and oil. One of the technologies that can be used to store natural gas is adsorbed natural gas (ANG). ANG utilizes the adsorption ability of adsorbent materials such as activated carbon to store natural gas. Activated carbon is made using palm shells through the stages of carbonization and activation. The carbonization was carried out at 400 oC and followed by an activation step to open the pores. Chemical activation was carried out with H3PO4 solution, while physical activation was carried out using N2 gas. Yield obtained from this experiment is 27.56%. To increase adsorption ability, impregnation was also carried out using MgO with variation of concentration of 0.5% w/w, 1% w/w, and 2% w/w. Activated carbon with the best results was activated carbon with 1% w/w MgO modification with a surface area of 1604.00 m2/g. The activated carbon produced then tested for its capacity to store natural gas. The largest natural gas adsorption capacity was obtained by activated carbon modified with 1% MgO w/w at temperature 28 oC and pressure 9 bar which was able to reach 0.027 kg/kg.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggi Nugroho Utomo
"Gas alam merupakan salah satu energi alternatif dalam memenuhi kebutuhan energi di Indonesia. Teknologi penyimpanan gas alam umumnya menggunakan CNG dan LNG. Teknologi tersebut memiliki kekurangan yang menyebabkan adanya masalah keamanan dan tidak ekonomis. Kekurangan ini dapat diatasi dengan menerapkan teknologi Adsorbed Natural Gas (ANG) yang menggunakan adsorben berupa karbon aktif yang terbuat dari limbah plastik jenis Poltylene terepthalate (PET). Pada penelitian ini, karbon aktif dari limbah PET melalui tahapan karbonisasi dan aktivasi. Karbonisasi dilakukan pada suhu 500 oC, aktivasi kimia dengan KOH 4 M, dan aktivasi fisika dengan gas N2 100 mL/menit. Untuk meningkatkan kemampuan adsorpsi dilakukan impregnasi dengan menggunakan Mg(NO3).6H2O dengan variasi konsentrasi 0,5%, 1%, dan 2%. Karbon aktif dengan karakteristik terbaik adalah karbon aktif termodifikasi MgO 1% b/b dengan bilangan iodin sebesar 984,51 mg/g dan luas permukaan sebesar 979,18 m2/g. Karbon aktif yang dihasilkan diuji kapasitasnya dalam menyimpan gas metana. Kapasitas adsorpsi terbesar didapatkan oleh karbon aktif termodifikasi MgO 1% b/b pada suhu 28 oC dan tekanan 9 bar yang mampu mencapai 0,148 kg/kg dengan desorpsi mencapai 76,34%.

Natural gas is an alternative energy that meets energy needs in Indonesia. Natural gas storage technology generally uses CNG and LNG. This technology has shortcomings that cause security problems and could be more economical. This deficiency can be overcome by implementing Adsorbed Natural Gas (ANG) technology, which uses an adsorbent in the form of activated carbon made from polyethylene terephthalate (PET) plastic waste. This research shows activated carbon from PET waste through carbonization and activation stages. Carbonization was carried out at a temperature of 500 oC, chemical activation with 4 M KOH, and physical activation with N2 gas 100 mL/minute. To increase the adsorption capacity, impregnation was carried out using Mg(NO3).6H2O with varying concentrations of 0.5%, 1%, and 2%. The activated carbon with the best characteristics is MgO 1% w/w modified activated carbon with an iodine number of 984.51 mg/g and a surface area of 979.18 m2/g. The resulting activated carbon was tested for its capacity to store methane gas. The largest adsorption capacity was obtained by 1% w/w MgO modified activated carbon at a temperature of 28 oC and a pressure of 9 bar, which reached 0.148 kg/kg with desorption reaching 76.34%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Athaya Khanza Kamilia
"
Penyimpanan dan transportasi gas alam merupakan tantangan utama dalam mengoptimalkan penggunaan energi terbarukan. Adsorbed Natural Gas (ANG) adalah suatu metode potensial untuk meningkatkan kapasitas penyimpanan gas alam. Pada penelitian ini, digunakan adsorben dari limbah botol polietilena tereftalat (PET) sebagai potensi pemanfaatan limbah plastik dalam sumber energi terbarukan. Pembuatan karbon aktif dilakukan melalui beberapa tahap, yaitu pre-treatment bahan baku, karbonisasi, aktivasi kimia dengan KOH 4 M, dan aktivasi fisika dengan aliran gas N2. Karbon aktif yang diperoleh kemudian dimodifikasi melalui proses impregnasi logam NiO dengan variasi konsentrasi 0,5%, 1%, dan 2% untuk mengetahui kemampuannya sebagai adsorben. Berdasarkan karakterisasi melalui metode uji bilangan iodin, SEM, dan EDS, diketahui bahwa sampel karbon aktif yang terimpregnasi NiO 2% menunjukan hasil terbaik dengan luas permukaan 997,65 m2/g. Kemudian, dilakukan uji kapasitas adsorpsi dan desorpsi gas alam pada sampel nonimpregnasi dan sampel terimpregnasi untuk mengetahui peningkatan kapasitas penyimpanan gas alam. Kapasitas adsorpsi gas alam terbesar didapatkan oleh karbon aktif terimpregnasi NiO 2% pada suhu 28 oC dan tekanan 9 bar yang mampu mencapai 138,9 g/kg.

Storage and transportation of natural gas has become a major challenge in optimizing the use of renewable energy. Adsorbed Natural Gas (ANG) is a potential method to increase natural gas storage capacity. In this research, adsorbents from waste polyethylene terephthalate (PET) bottles were used as a potential of plastic waste as a renewable energy source. The preparation of activated carbon is carried out through several stages, namely pre-treatment of raw materials, carbonization, chemical activation with KOH 4 M, and physical activation with N2 gas flow. The activated carbon obtained was then modified through a NiO metal impregnation process with varying concentrations of 0.5%, 1% and 2% to determine its ability as an adsorbent. Based on characterization using the iodine number test method, SEM, and EDS, it is known that the activated carbon sample impregnated with 2% NiO showed the best results with a surface area of 997,65 m2/g. Then, natural gas adsorption and desorption capacity tests were carried out on non- impregnated samples and impregnated samples to determine the increase in natural gas storage capacity. The largest natural gas adsorption capacity was obtained by 2% NiO impregnated activated carbon at a temperature of 28 oC and a pressure of 9 bar which was able to reach 138,9 g/kg."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dedy Darmawan Samid
"Persamaan model Dubinin-Astakhov digunakan untuk mencari pengaruh karakteristik karbon aktif yang digunakan sebagai adsorben terhadap unjuk kerja pada proses adsorpsi dan proses desorpsi dari sistem ANG (Adsorbed Natural Gas) dalam keadaan dinamis. Keadaan dinamis adalah keadaan kerja sebenarnya dimana pada tahapan adsorpsi terjadi kenaikan temperatur dan pada tahapan desorpsi terjadi penurunan temperatur. Dari hasil pendekatan teoritis menggunakan persamaan Dubinin-Astakhov akan didapatkan karakteristik karbon aktif optimal yang menghasilkan unjuk kerja paling maksimal terhadap perubahan temperatur yang terjadi (ΔT). Untuk mendapatkan kapasitas adsorpsi dan desorpsi yang baik dalam keadaan dinamis maka dibutuhkan karbon aktif yang memiliki volume mikropori (Wo) dan nilai penyebaran pori (n) yang besar. Sedangkan lebar pori (Lo) yang akan menghasilkan kapasitas tersimpan (Qds) terbaik adalah lebar pori (Lo) dengan nilai 1,5 nm dan untuk menghasilkan kapasitas terkirim (Qdd) terbaik adalah lebar pori (Lo) dengan nilai 2,3 nm.

Dubinin-Astakhov equation is use to find the influence from the characteristics of activated carbon that is use as adsorbent to the performance on adsorption process and desorption process under dynamic condition. Dynamic condition is the real work condition where in that condition an adsorption process there is an increase in temperature and a desorption process there is an decrease in temperature. From the theoritical study using Dubinin-Astakhov equation we can get the optimal characteristics of activated carbon that produce the greater performance do to the temperatur change that happen (ΔT). To get the greater adsorption dan desorption capacity under dynamic condition we must use activated carbon that have bigger mikropore volume (Wo) and pore size distribution (n). For the micropore width (Lo) that can produce the greater stored capacity is the micropore width (Lo) with the value around 1,5 nm and greater delivered capacity is the micropore width (Lo) with the value around 2,3 nm."
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29555
UI - Tesis Open  Universitas Indonesia Library
cover
Imas Mega Pratiwi
"ABSTRAK
Bioetanol merupakan bahan bakar alternatif yang dianggap paling menjanjikan di masa depan karena bioetanol merupakan bahan bakar yang ramah lingkungan. Pada prosesnya, etanol yang dihasilkan memilki kadar 30-40 v/v. Sehingga dengan begitu etanol masih membutuhkan proses pemurnian. Salah satu metode pemurnian yang paling hemat energi adalah adsorpsi. Salah satu parameter adsorpsi adalah kinetika laju adsorpsi. Penelitian ini ditujukan untuk mengetahui kinetika adsorpsi sistem etanol-air pada PVA, zeolite, dan karbon aktif. Proses adsorpsi pada temperatur 30oC menghasilkan laju kinetika adsorpsi yang optimum untuk adsorben PVA, zeolite, dan karbon aktif. Laju adsorpsi optimum untuk PVA, zeolite, dan karbon aktif masing-masing bernilai 0,4911 menit-1; 0,5 menit-1; dan 1,1272 menit-1. Nilai energi aktivasi dari masing-masing adsorben adalah 51,43 kJ/mol untuk PVA; 8,16 kJ/mol untuk zeolite; dan 20,30 kJ/mol untuk karbon aktif. Dari nilai energi aktivasi dapat diketahui bahwa proses adsorpsi dengan PVA sebagai adsorben merupakan proses adsorpsi secara kimiawi, proses adsorpsi menggunakan zeolit merupakan proses adsorpsi secara fisika, dan proses adsorpsi menggunakan karbon aktif merupakan proses adsorpsi secara fisika. Berdasarkan tingkat selektivitas air dan etanol, disimpulkan bahwa PVA, zeolite, dan karbon aktif dapat digunakan dalam proses pemurnia untuk mendapatkan etanol yang nantinya dapat digunakan sebagai bahan bakar bioetanol.

ABSTRACT
Bioethanol is an alternative fuel that is considered the most promising in the future because it is eco friendly. In the process, production of bioethanol had levels of 30 ndash 40 v v. So, ethanol need to be purified for reaching levels above 95 v v. The method which has the most energy efficient is adsorption. One of parameter from adsorption is kinetics of adsorption rate. This study aimed to determine the kinetics of adsorption rate of ethanol water system on PVA, Zeolite, and Activated Carbon. The optimum adsorption rates for each PVA, zeolite, and activated carbon are 0.4911 min 1 0.5 min 1 dan 1.1272 min 1. The activation energy value of each adsorbent are 51.43 kJ mol for PVA 8.16 kJ mol for zeolite And 20.30 kJ mol for activated carbon. From activation energy, can be seen that the adsorption process using PVA as adsorbent is chemisorption, adsorption process using zeolite is physisorption, and adsorption process using activated carbon is physisorption According the water to ethanol selectivity study, we found that zeolite as a potential adsorbent compared to the others due to the molecular sieving properties of the material."
2017
S68931
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Ari Wibowo
"Teknologi Adsorbed Natural Gas (ANG) merupakan teknologi penyimpanan gas metana dalam keadaan teradsorpsi. Pada teknologi ini kapasitas penyimpanan gas metana dapat meningkat dibandingkan Compress Natural Gas dengan adanya karbon aktif. Penelitian ini bertujuan untuk mendapatkan karbon aktif berbasis tempurung kelapa sebagai adsorben penyimpanan gas metana dengan aktivasi kimia KOH dan aktivasi fisika 7500C dengan CO2. Hasil karbon aktif tempurung kelapa akan diuji kapasitas penyimpanan dan sebagai pembanding digunakan karbon aktif komersial. Parameter variasi yang digunakan adalah laju alir 10, 15, 20 slpm dengan tekanan batas 30 bar pada proses penyimpanan dalam kondisi dinamis. Peningkatan kapasitas penyimpanan gas metana melalui karbon aktif tempurung dan komersial adalah 94% dan 150% dibandingkan Compress Natural Gas pada tekanan 30 bar. Hasil terbaik didapat melalui laju alir 10 slpm pada tekanan 30 bar yaitu memiliki kapasitas penyimpanan 0,080 kg/kg dengan luas permukaan 953 m2/g dan karbon aktif komersial memiliki kapasitas 0,1 kg/kg dengan luas permukaan 1201 m2/g.

Technology Adsorbed Natural Gas (ANG) is a storage technology in condition adsorbed methane storage. In this technology methane storage capacity can be increased compared to Compress Natural Gas in the presence of activated carbon. The research aims to get coconut shell-based activated carbon as adsorbent methane storage with KOH chemical activation and physical activation with CO2 7500C. The results of coconut shell activated carbon would be test to storage capacity and as comparison commercial activated carbon used. Parameter variations in this research are flow rates of 10, 15, 20 slpm with a pressure limit 30 bar in the storage process in dynamic conditions. Increased methane storage capacity through coconut shell activated carbon and commercial are 94% and 150% compared Compress Natural Gas at 30 bar. Best results are obtained through a flow rate of 10 slpm at pressure of 30 bar which has a storage capacity of 0.080 kg/kg with a surface area of 953 m2/g and commercial activated carbon has a capacity of 0.1 kg/kg with a surface area of 1201 m2/g."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59295
UI - Skripsi Membership  Universitas Indonesia Library
cover
Osvaldo Sahat Parulian Samuel
"ABSTRAK
Teknologi Adsorbed Natural Gas (ANG) merupakan teknologi penyimpanan gas yang berdasarkan pada prinsip adsorpsi dengan memanfaatkan material dengan porositas tinggi sebagai adsorben. Teknologi ini menyediakan metode penyimpanan gas alam dengan kandungan metana tinggi pada konsentrasi yang tinggi dan dapat dilakukan dengan kompresi yang sederhana. Salah satu material berpori untuk menyerap gas metana pada tangki ANG adalah karbon aktif yang merupakan bahan yang memiliki luas permukaan yang sangat besar karena memiliki porositas tinggi. Karbon aktif dapat diproduksi dari sampah kulit pisang karena kandungan karbon dari material ini yang cukup tinggi. Variasi pembuatan karbon aktif dari sampah kulit pisang dilakukan menggunakan dua konsentrasi aktivasi kimia ZnCl2 yang berbeda (0.25 N dan 1 N) dan variasi proses karbonisasi dengan dua metode yang berbeda (karbonisasi basah dan karbonisasi kering). Karbon aktif dari tiap jenis variasi dengan karakteristik terbaik digunakan sebagai adsorben pada uji penyimpanan gas pada tangki ANG sehingga diketahui kapasitas penyimpanan dan kapasitas pelepasan gas metana dari karbon aktif yang diproduksi. Pembuatan karbon aktif dengan metode karbonisasi basah dan aktivator kimia ZnCl2 konsentrasi 1 N menghasilkan karbon aktif dengan karakteristik terbaik dengan bilangan iod 681.824 mg/g dan luas permukaan 797.037 m2/g. Pada tekanan 40 bar, karbon aktif ini memiliki kapasitas penyimpanan gas metana sebesar 0.263 kg/kg dan kapasitas pelepasan gas metana 0.151 kg/kg. Efesiensi desorpsi/adsorpsi dari karbon aktif ini adalah sebesar 57.43%. Perbandingan dengan karbon aktif komersial juga dilakukan dimana kapasitas penyimpanan dan kapasitas pelepasannya adalah 0.454 kg/kg dan 0.328 kg/kg, dimana efesiensi desorpsi/adsorpsi nya sebesar 72.46%.

ABSTRACT
Adsorbed Natural Gas Technology (ANG) is a natural gas storage method based on the principle of adsorption which utilizes a highly porous material as adsorbents. This technology facilitates a natural gas with high methane contents storage method which may be done with simple compression. One of the porous materials that is commonly applied to adsorp methane in ANG tank is activated carbon which is a material that has large surface area because of its high porosity. Activated carbon can be produced from banana peel waste because of its high carbon contents. The production of activated carbon from banana peel waste is carried out by variation of two different chemical activator ZnCl2 concentrations (0.25 N and 1 N) and variation of two carbonization methods (wet carbonization and dry carbonization). Activated carbon with the best characterization will be adopted as adsorbents on ANG tank to discover its storage capacity and delivery capacity. Activated carbon prepared by wet carbonization process and using 1 N ZnCl2 as the chemical activator has the best characterization with iod number of 681.824 mg/g and surface area of 797.037 m2/g. At 40 bar condition, this activated carbon has methane storage capacity of 0.263 kg/kg and methane delivery capacity of 0.151 kg/kg. The desorption/adsorption of this activated carbon is 57.43%. A comparison with commercial activated carbon is also performed where its methane storage capacity and delivery capacity is 0.454 kg/kg and 0.328 kg/kg. The desorption/adsorption of this commercial activated carbon is 72.46%"
2016
S64693
UI - Skripsi Membership  Universitas Indonesia Library
cover
Awaludin Martin
"Penelitian ini terdiri atas dua bagian penelitian, yaitu proses produksi karbon aktif berbahan dasar batubara sub bituminus Indonesia yang berasal dari Kalimantan Timur dan Riau dan adsorpsi isotermal karbon dioksida dan metana pada karbon aktif hasil penelitian bagian pertama. Karbon aktif diproduksi di laboratorium dengan menggunakan aktivasi fisika dimana gas CO2 digunakan sebagai activating agent pada temperatur aktivasi sampai dengan 950oC. Karbon aktif yang diproduksi selanjutnya dilakukan pengujian untuk mengetahui kualitas karbon aktif berupa angka Iodine dan luas permukaan. Dari penelitian yang dilakukan didapat bahwa karbon aktif berbahan dasar batubara Kalimantan Timur lebih baik dibanding dengan karbon aktif berbahan dasar batubara Riau. Hal tersebut dikarenakan oleh perbandingan unsur oksigen dan karbon pada batubara Kalimantan Timur lebih tinggi daripada batubara Riau. Angka Iodine maksimum pada karbon aktif berbahan dasar batubara Riau adalah 589,1 ml/g, sementara karbon aktif berbahan dasar batubara Kalimantan sampai dengan 879 ml/g.
Adsorpsi isotermal karbon dioksida dan metana pada karbon aktif Kalimantan Timur dan Riau serta satu jenis karbon aktif komersial dilakukan di laboratorium Teknik Pendingin dan Pengkondisian Udara Teknik Mesin FTUI. Adsorpsi isotermal dilakukan dengan menggunakan metode volumetrik dengan variasi temperatur isotermal 27, 35, 45, dan 65oC serta tekanan sampai dengan 3,5 MPa. Data adsorpsi isotermal yang didapat adalah data kapasitas penyerapan karbon dioksida dan metana pada karbon aktif pada variasi tekanan dan temperatur isotermal yang kemudian di plot dalam grafik hubungan tekanan dan kapasitas penyerapan. Dari hasil penelitian didapat bahwa kapasitas penyerapan karbon aktif komersial lebih baik dibandingkan dengan karbon aktif Kalimantan Timur dan Riau, hal tersebut dikarenakan luas permukaan dan volume pori karbon aktif komersial lebih tinggi dibanding yang lain. Kapasitas penyerapan CO2 pada karbon aktif komersial (CB) maksimum adalah 0,349 kg/kg pada temperatur 27oC dan tekanan 3384,69 kPa, sementara untuk karbon aktif Kalimantan Timur (KT) adalah 0,227 kg/kg pada temperatur 27oC dan tekanan 3469,27 kPa dan untuk karbon aktif Riau (RU) adalah 0,115 kg/kg pada temperatur 27oC dan tekanan 3418,87 kPa. Kapasitas penyerapan CH4 pada karbon aktif CB maksimum adalah 0,0589 kg/kg pada temperatur isotermal 27oC dan tekanan 3457,2 kPa, sementara untuk karbon aktif KT adalah 0,0532 kg/kg pada temperatur 27oC dan tekanan 3495,75 kPa dan untuk karbon aktif RU adalah 0,0189 kg/kg pada temperatur 27oC dan tekanan 3439,96 kPa.
Data adsorpsi isotermal yang didapat selanjutnya dikorelasi dengan menggunakan persamaan model Langmuir, Toth, dan Dubinin-Astakhov. Dari hasil perhitungan korelasi persamaan didapat bahwa persamaan model Toth adalah persamaan model yang paling akurat, dimana nilai simpangan antara data eksperimen adsorpsi isotermal CO2 dengan korelasi persamaan model Toth adalah 3,886% (CB), 3,008% (KT) dan 2,96% (RU). Sementara untuk adsorpsi isotermal CH4 adalah 2,86% (CB), 2,817 (KT), dan 5,257% (RU). Dikarenakan persamaan model Toth adalah persamaan yang paling akurat, maka perhitungan panas adsorpsi isosterik dan adsorpsi isosterik dilakukan dengan menyelesaikan persamaan model Toth tersebut. Data panas adsorpsi dibutuhkan untuk mengetahui berapa besar panas yang dilepaskan ketika adsorben menyerap karbon dioksida dan metana, sementara data adsorpsi isosterik diperlukan untuk dapat memprediksi berapa besar tekanan yang dibutuhkan dan temperatur isotermal yang harus dikondisikan untuk menyerap gas karbon dioksida dan metana dalam jumlah yang telah diketahui.

This research is consists of two main topics, first is production of activated carbon from Indonesian sub bituminous coal as raw material. The raw material is from East of Kalimantan and Riau sub bituminous coal. And secondly is adsorption isotherms carbon dioxide and methane on activated carbon. Activated carbon was produced in laboratory with physical activation method by carbon dioxide as activating agent up to 950oC. Iodine number and surface area was used to characterize of activated carbon quality. From the research, the quality of activated carbon from East of Kalimantan sub bituminous coal is better than Riau sub bituminous coal. It caused the ratio of oxygen and carbon in from East of Kalimantan sub bituminous coal is higher than Riau sub bituminous coal. The maximum iodine number of activated carbon from Riau sub bituminous coal is 589.1 ml/g and activated carbon from East of Kalimantan sub bituminous coal is 879 ml/g.
Adsorption isotherms carbon dioxide and methane on activated carbon from East of Kalimantan and Riau sub bituminous coal and commercial activated carbon was done in Refrigeration and Air Conditioning Laboratory, Mechanical Engineering Department, Faculty of Engineering, University of Indonesia. Adsorption isotherms were done by volumetric method with variation of temperature is 27, 35, 45, and 65oC and the pressure of adsorption up to 3.5 MPa. Data of adsorption isotherm is adsorption capacity of carbon dioxide and methane on activated carbon with pressure and isotherms temperature variation. Data of adsorption capacity was plotted on pressure and adsorption capacity. From the research, adsorption capacity of commercial activated carbon is higher than Activated carbon from East of Kalimantan and Riau coal. It is caused; the surface area and pore volume of commercial activated carbon is higher than East of Kalimantan and Riau coal. The maximum adsorption capacity of CO2 on commercial activated carbon is 0.349 kg/kg at isotherm temperature 27oC and the pressure is 3384.69 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CO2 is 0.227 kg/kg at isotherm temperature 27oC and the pressure is 3469.27 kPa. For activated carbon from Riau, the maximum adsorption capacity of CO2 is 0.115 kg/kg at isotherm temperature 27oC and the pressure is 3418.87 kPa. The maximum adsorption capacity of CH4 on commercial activated carbon is 0.0589 kg/kg at isotherm temperature 27oC and the pressure is 3457.2 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CH4 is 0.0532 kg/kg at isotherm temperature 27oC and the pressure is 3495.75 kPa. For activated carbon from Riau, the maximum adsorption capacity of CH4 is 0.0189 kg/kg at isotherm temperature 27oC and the pressure is 3439.96 kPa.
Adsorption isotherms data was correlated with Langmuir, Toth, and Dubinin- Astakhov equation models. From the calculation, Toth equation model more accurate than Langmuir and Dubinin-Astakhov. The deviation between experiment data of adsorption isotherm CO2 and calculation by using Toth equation model is 3.886% for commercial activated carbon data, 3.008% for East of Kalimantan activated carbon, and 2.96% for Riau activated carbon. The deviation between experiment data of adsorption isotherm CH4 and calculation by using Toth equation model is 2.86% for commercial activated carbon data, 2.817% for East of Kalimantan activated carbon, and 5.257% for Riau activated carbon.Isosteric heat of adsorption and adsorption isostere was calculated by using Toth equation model, caused the Toth equation model more accurate than Langmuir and Dubinin-Astakhov models. Isosteric heat of adsorption is needed to know the amount of heat of adsorption released when activated carbon adsorpt the adsorbate. The adsorption isostere data is needed to predict the pressure and isotherm temperature for adsorp the amount of adsorbate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
D998
UI - Disertasi Open  Universitas Indonesia Library
cover
Andra Bernama Priatma Adji
"Pengunaan metana merupakan salah satu alternatif yang mernarik utnuk dipetimbangkan untuk memenuhi kebutuhan bahan bakar yang semakin meningkat karena sumbernya yang besar, harganya yang tidak mahal dan emisi gas buang beracun yang rendah. Permasalahan yang ada saat ini untuk gas metana adalah wadah, transportasi dan teknologi penyimpanan. Teknologi penyimpanan gas metana saat ini masih dalam pengembangan salah satunya dengan menggunakan teknologi Adsorbed Natural Gas (ANG) dengan tekanan yang lebih rendah yaitu 35,000 kPa sampai 50,000 kPa. Penelitian ini bertujuan untuk mendapatkan karbon aktif dari sumber yang dapat dperbarui serta dapat mengatasi masalah lingkungan. Karena itu digunakan ampas kopi yang dalam setahun dapat terproduksi sebesar 247.5 ribu ton. Preparasi ampas kopi menjadi karbon aktif didapatkan dengan proses karbonisasi, aktivasi kimia dengan menggunakan KOH yang dilakukan dengan berbagai macam variasi molaritas, dan Aktivasi Kimia Fisika. Hasil yang pengujian kapasitas gas metana yang didapatkan adalah 0.221 kg/kg pada temperatur 27.6 C0 dan tekanan 32,7300 kPa. Luas permukaan karbon aktif diuji dengan metode BET sebesar 399.1 m2/g.

The usage of methane is one of the alternative consideration to fullfil ythe increasing demands of fuel because it has large source, their prices not as expensive as liquid hydrocarbon and lower toxic gas emissions.The current problems for methane gas are the transportation and storage technology. Methane gas storage technology that currently still in the development is adsorbed natural gas (ANG) which has lower pressure than compressed natural gas at 35 to 50 bar. This research is conducted to gain activated carbon made from renewable resources and to find solution from coffee?s waste. Coffee's waste is a common problem in Indonesia whch produce 247.5 thousand tonne per year. The process to make activated carbon from coffee?s waste are carbonization, chemical activation and physio-chemical activation. This reseach obtain activated ccarbon that can adsorp methane by 0.221 kg/kg at 27.60C and 32.73 bar. The surface area itself is tested with BET method that has 399.1 m2/g of the area.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63376
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>