Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 70410 dokumen yang sesuai dengan query
cover
Vanny Natasya
"Penggunaan Amonia boran sebagai salah satu metode yang dapat memproduksi hidrogen dilakukan dengan bantuan katalis dan penyangga. Amonia boran digunakan karena memiliki kandungan hidrogen yang besar sehingga menjanjikan untuk aplikasi pembentukan hidrogen. Pada penelitian ini katalis trimetalik RuNiAg dengan penyangga karbon nanosphere berhasil disintesis melalui impregnasi basah lalu dikarakterisasi dengan FTIR, XRD, XRF, Raman, SEM, HRTEM, FESEM, dan SAA. Pengaruh dari variasi komposisi logam, suhu, penambahan NaOH, dan keberulangan pemakaiannya dievaluasi serta dipelajari ditinjau dari aktivitas katalitik serta nilai Turn Over Frequency (TOF). Katalis Ru0.05Ni0.73Ag0.21/CNS memberikan performa aktivitas katalitik terbaik dalam dekomposisi senyawa amonia boran dibandingkan variasi lainnya pada suhu ruang yaitu sebesar 990,91 h-1 serta energi aktivasi (Ea) dihasilkan sebesar 23,36 kJ/mol. Pada penambahan NaOH serta suhu, memberikan peningkatan pada nilai TOF yang dihasilkan pada aktivitas katalitiknya yang menunjukkan efek sinergis dari logam Ru, Ni, dan Ag pada penyangga karbon nanosphere.

The use of Ammonia borane as a method to produce hydrogen is carried out with the help of catalysts and supports. Ammonia borane is used because it has a large hydrogen capasity, making it promising for hydrogen forming applications. In this study the trimetallic RuNiAg catalyst with carbon nanosphere support was successfully synthesized via wet impregnation and then characterized by FTIR, XRD, XRF, Raman, SEM, HRTEM, FESEM, and SAA. The effects of variations in metal composition, temperature, addition of NaOH, and reusability were evaluated and studied in terms of catalytic activity and Turn Over Frequency (TOF) values. The catalyst Ru0.05Ni0.73Ag0.21/CNS gave the best performance of catalytic activity in the decomposition of ammonia boranes compared to other variations at room temperature which was 990.91 h-1 and activation energy (Ea) was 23.36 kJ/mol. The addition of NaOH and temperature increases the TOF value resulting in its catalytic activity which indicates a synergistic effect of the metals Ru, Ni, and Ag on the carbon nanosphere support.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mudrika
"Penelitian ini mengembangkan katalis heterogen menggunakan MgO dengan katalis pendukung Fe3O4 dan biopolimer selulosa digunakan dalam sintesis metil ester pada reaksi transesterifikasi dari minyak kelapa. Nanopartikel magnetik Fe3O4 yang dibuat dengan metode ko-presipitasi dilapisi dengan berbagai rasio MgO (1:1, 1:2, 1;3) membentuk komposit Fe3O4/MgO dengan metode prespitasi kemudian diimpregnasi ke permukaan selulosa. Nanokomposit Selulosa-Fe3O4/MgO yang telah disintesis didukung dengan karakterisasi menggunakan FTIR, XRD, SEM-mapping dan TEM. Faktor-faktor yang mempengaruhi proses transesterifikasi meliputi waktu reaksi, rasio minyak kelapa terhadap metanol dan jumlah katalis. Kondisi optimum diperoleh pada pada waktu reaksi 2 jam, rasio minyak kelapa metanol (1: 6), jumlah katalis 2% dan rasio Fe3O4 terhadap MgO yang terbaik (1:2) mencapai yield biodiesel sebesar 89,723%. Selanjutnya, metil ester yang berhasil disintesis diuji dengan menggunakan instrumen GC-MS dan kelimpahan terbesar berada pada waktu retensi 8.801 menit yang menunjukan senyawa asam dodekanoat metil ester (asam laurat metil ester). Hasil analisis sifat fisik dari metil ester yang diperoleh sesuai dengan standar SNI dan ASTM, dengan massa jenis (40°C) 0.885 g/ml, Asam Lemak Bebas (FFA) 0,154 % dan bilangan asam 0,443 mg KOH/g. Studi kinetika reaksi transesterifikasi mengikuti orde pseudo pertama dan diperoleh konstanta laju reaksi yang kecil yaitu 0.0156 menit-1 dibandingkan dengan beberapa penelitian yang serupa

This research developed a heterogeneous catalyst using MgO with Fe3O4 as support catalyst and cellulose biopolymer used in the synthesis of methyl esters in the transesterification reaction of coconut oil. Nanoparticles magnetic Fe3O4 prepared by the co-precipitation method were coated with various MgO ratios (1: 1, 1: 2, 1: 3) to form Fe3O4/ MgO composites using the prespitation method and then impregnated onto the cellulose surface. The synthesized Cellulose- Fe3O4 / MgO nanocomposites were supported by characterization using FTIR, XRD, SEM-mapping and TEM. The factors that influence the transesterification process include reaction time, the ratio of coconut oil to methanol and the amount of catalyst. The optimum conditions were obtained at a reaction time of 2 hours, the ratio of coconut oil to methanol (1: 6), the amount of catalyst 2% and the best ratio of Fe3O4to MgO (1: 2) to achieve a biodiesel yield of 89.723%. The methyl ester that was successfully synthesized was tested using the GC-MS instrument and the greatest abundance was at the retention time of 8.801 minutes which indicated that dodecanoic acid methyl ester (lauric acid methyl ester). The results of the analysis of the physical properties of the methyl ester obtained were in accordance with SNI and ASTM standards, with a density (40 ° C) of 0.885 g / ml, Free Fatty Acid (FFA) 0.154% and an acid number of 0.443 mg KOH / g. The study of the transesterification reaction kinetics followed the first pseudo-order and obtained a small reaction rate constant of 0.0156 minutes-1 compared to several similar studies"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauzan Ramadhani
"Methyl orange (MO) merupakan bahan pewarna yang berbahaya bagi kesehatan dan lingkungan. MO sering digunakan dalam industri tekstil dan menghasilkan limbah dalam jumlah berbahaya yang perlu didegradasi. Salah satu cara yang efisien untuk mendegradasi MO adalah dengan cara fotokatalitik. Pada penelitian ini, dilakukan sintesis Cu/TiO2 nanosheet dan Cu/TiO2 flakes sebagai katalis untuk fotodegradasi MO. TiO2 nanosheet memiliki kemampuan fotokatalitik terbaik karena dapat mendegradasi 98,815% MO selama 210 menit. Sementara persentase degradasi Cu/TiO2 nanosheet, Cu/TiO2 flakes, dan Cu/TiO2 flakes masing-masing sebesar 96,644 %, 91,272 %, dan 62,554 % dengan konstanta laju untuk TiO2 nanosheet, TiO2 flakes, Cu/TiO2 nanosheet, dan Cu/TiO2 flakes berturut-turut adalah 2,238 × 10-2, 4,718 × 10-3, 1,646 × 10-2, dan 1,172 × 10-2 menit-1. Bentuk TiO2 nanosheet terbukti memiliki kemampuan fotokatalitik yang lebih baik dibandingkan bentuk TiO2 flakes. Katalis yang terbentuk dikarakterisasi dengan X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Spektroskopi Raman, Field Emission Scanning Electron Microscopy (FESEM), Scanning Electron Miscroscopy - Energy Dispersion X-Ray (SEM-EDX), Surface Area Analyzer – Brunauer–Emmett–Teller (SAA–BET), dan Spektroskopi UV – Diffuse Reflectance Spectroscopy (DRS). Hasil uji fotokatalis diukur dengan Spektrofotometer UV-Vis.

Methyl orange (MO) is a coloring agent that harms health and the environment. MO is frequently used in the textile industry and generates hazardous amounts of waste that need to be degraded. One of the efficient ways to degrade MO is by photocatalytic method. In this research, synthesis of Cu/TiO2 nanosheet and Cu/TiO2 flakes was carried out as catalysts for MO photodegradation. TiO2 nanosheet has the best photocatalytic ability because it can degrade 98.815% MO for 210 minutes. While the percentage of degradation of Cu/TiO2 nanosheet, Cu/TiO2 flakes and Cu/TiO2 flakes were 96.644 %, 91.272 % and 62.554 % respectively, with rate constants for TiO2 nanosheet, TiO2 flakes, Cu/T TiO2 nanosheet and Cu/TiO2 flakes were 2.238 × 10-2, 4.718 × 10-3, 1.646 × 10-2, and 1.172 × 10-2 min-1 respectively. The TiO2 nanosheet form is proven to have better photocatalytic abilities than the TiO2 flakes form. The formed catalysts were characterized by X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Scanning Electron Microscopy - Energy Dispersion X-Ray (SEM-EDX), Surface Area Analyzer-Brunauer–Emmett–Teller (SAA–BET), and UV–Diffuse Reflectance Spectroscopy (DRS). The results of the photocatalyst test were measured with a UV-Vis Spectrophotometer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sabiq Mufarrid
"Dengan semakin menipisnya pasokan bahan bakar fosil, bahan baku baru untuk memproduksi bahan bakar dan bahan baku industri petrokimia dibutuhkan. Bahan baku tersebut haruslah dapat diperbaharui dan ramah lingkungan. Biomassa lignoselulosa dapat menjadi alternatif bahan baku yang menjanjikan karena diperoleh dari tanaman dan merupakan zat yang netral karbon. Salah satu jenis biomassa lignoselulosa yang menjanjikan karena jumlahnya yang banyak di Indonesia adalah jerami padi. Jerami padi dapat diubah menjadi bahan bakar dan bahan baku industri petrokimia melalui reaksi pirolisis. Hanya saja, hasil reaksi pirolisis masih mengandung senyawa hidrokarbon oksigenat yang beragam jenisnya. Senyawa oksigenat ini perlu dikonversi menjadi senyawa hidrokarbon non-oksigenat agar dapat digunakan sebagai bahan bakar dan bahan baku industri petrokimia.
Penggunaan katalis asam seperti katalis berbasis zeolit (ZSM-5) telah terbukti mampu untuk melakukan reaksi deoksigenasi dan perengkahan katalitik untuk meningkatkan produksi senyawa hidrokarbon non-oksigenat pada reaksi pirolisis katalitik. Pada penelitian ini, rasio umpan katalis per jerami padi akan divariasikan untuk melihat dampak dari rasio tersebut terhadap hasil senyawa hidrokarbon non-oksigenat. Suhu reaksi juga akan divariasikan untuk melihat pengaruh suhu terhadap produksi senyawa hidrokarbon non-oksigenat. Selain itu, waktu pengambilan sampel juga akan divariasikan untuk melihat komposisi produk pirolisis dari waktu ke waktu.
Hasil dari penelitian ini menunjukkan bahwa rasio katalis per biomassa yang semakin besar dapat meningkatkan produksi senyawa hidrokarbon non-oksigenat dengan rasio katalis per biomassa yang menghasilkan senyawa hidrokarbon non-oksigenat tertinggi adalah 1:1. Kenaikan suhu reaksi pirolisis pun mampu meningkatkan produksi senyawa hidrokarbon non-oksigenat dengan suhu yang menghasilkan senyawa hidrokarbon non-oksigenat tertinggi adalah 550°C. Pada kondisi reaksi tersebut, total peak area senyawa hidrokarbon non-oksigenat yang terlihat adalah 1,50×109 dengan peak area senyawa olefin yang terlihat sebesar 4,33×108 dan konsentrasi senyawa aromatik sebesar 0,7 g mL. Namun, komposisi produk pirolisis berubah dan berkurang seiring waktu yang diakibatkan oleh deaktivasi katalis akibat pembentukan kokas di permukaan katalis.

With the declining of fossil fuel, a new raw material to produce fuels and petrochemical industry feedstock is needed. Such material should be renewable and eco-friendly. Lignocellulosic biomass could be a promising alternative for it is obtained from plants and is carbon-neutral. One of the promising lignocellulosic biomass for its abundance in Indonesia is rice straw. Rice straw could be converted into fuels and petrochemical feedstock via pyrolysis pathway. However, its pyrolysis reaction products still contains a variative amount of oxygenate hydrocarbons. These oxygenates have to be converted into non-oxygenate hydrocarbons before it can be used as fuels and petrochemicals feedstock.
The usage of zeolites based acid catalysts (ZSM-5) has been proven to perform deoxygenation and catalytic cracking reaction to enhance the production of nonoxygenates in catalytic pyrolysis reaction. In this research, catalyst rice straw feed ratio would be varied to see its effect on non-oxygenate hydrocarbons production. Reaction temperature would also be varied to see its effect on non-oxygenate hydrocarbons production. Moreover, sampling time would also be varied to see the pyrolysis product composition through time.
The result showed that increase in catalyst biomass ratio will increase the non-oxygenate hydrocarbons production with the highest amount of nonoxygenates was produced by 1:1 catalyst biomass ratio. Rise in reaction temperature also showed the increase in non-oxygenate hydrocarbons with the highest amount of nonoxygenates was produced in 550°C reaction temperature. The highest total peak area of non-oxygenates produced under those reaction condition was 1,50×109 with the highest peak area of olefins was 4,33×108 and the highest concentration of aromatics was 0,7 g mL. However, the products composition was shifting and decreasing through time due to catalyst deactivation by coke formation on its surface.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aryanissa Nur Iziarti
"Energi hidrogen yang dipertimbangkan sebagai sumber energi baru ramah lingkungan pengganti energi fosil semakin digencarkan pengembangannya. Salah satu senyawa yang berguna sebagai pembawa hidrogen adalah amonia boran (NH3BH3) dengan kandungan hidrogen sebesar 19,6 wt%. Telah disintesis katalis Rutenium berpenyangga CeO2 Nanosphere untuk reaksi dehidrogenasi amonia boran dan dilakukan penambahan logam Fe ke dalam katalis. Karakterisasi XRD, XRF, SAA, TEM, dan Spektroskopi Raman dilakukan terhadap katalis. Diuji pengaruh variasi morfologi, komposisi, temperatur, konsentrasi NaOH, dan durablitas katalis terhadap reaksi dehidrogenasi amonia boran. Katalis Ru0.75Fe0.25/CeO2 Nanosphere memiliki hasil uji aktivitas katalitik tertinggi dengan nilai TOF sebesar 153,714 h-1 pada suhu 308 K. Nilai energi aktivasi (Ea) yang didapatkan dari variasi temperatur sebesar 37,587 kJ/mol.

Hydrogen energy is considered to be the new resource of clean and renewable energy compared to fossil fuel. Ammonia borane (NH3BH3) is known as one of the hydrogen carrier compounds which contain 19,6 wt% of hydrogen. Ruthenium catalyst supported by CeO2 Nanosphere has been successfully synthesized and the addition of Fe metal to the catalyst has been carried out for dehydrogenation of ammonia borane purposes. Some characterizations such as XRD, XRF, SAA, TEM, and Raman Spectroscopy were tested on the catalyst. Variations of morphology, composition, temperature, concentration of sodium hydroxide, and durability tests were carried out to evaluate their effect on the reaction. The result shows that Ru0.75Fe0.25/CeO2 Nanosphere catalyst exhibits the highest catalytic activity measured by TOF value 153,714 h-1 under 308 K. Activation energy is obtained by temperature variation in the value of 37,587 kJ/mol."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hana Rufaidah
"Energi hidrogen merupakan salah satu alternatif energi terbarukan yang ramah lingkungan. Hidrogen dapat diproduksi dengan berbagai macam metode salah satunya adalah dehidrogenasi amonia boran. Amonia boran memiliki karakteristik seperti stabilitas di udara dan air, kandungan hidrogen yang tinggi sekitar 19.6 wt% yang pada reaksinya akan terbentuk 3 mol hidrogen. Katalis RuX (X = Ni, Fe, Ag) dengan pendukung karbon nanosphere (CNS) disintesis dengan metode impregnasi basah dan dikarakterisasi dengan TEM, SAA, XRD dan XRF. Pengaruh dari penambahan logam X, variasi suhu, konsentrasi NaOH, dan keberulangan pemakaiannya dievaluasi dan dipelajari terhadap aktivitas katalitik. Kartalis bimetalik RuNi memiliki aktivitas katalitik tertinggi dengan penambahan NaOH 1 M yang menghasilkan nilai TOF 3481,9 h-1 dan energi aktivasi 23,054 kJ/mol yang menunjukkan adanya efek sinergis antara logam Ru dan Ni pada pendukung karbon nanosphere.

Hydrogen energy is one of the environmentally friendly renewable energy alternatives. Hydrogen can be produced by various methods, one of which is the dehydrogenation of ammonia borane. Ammonia borane has characteristics such as stability in air and water, a high hydrogen content of about (19.6 wt%) which in the reaction will form 3 moles of hydrogen. RuX catalyst (X = Ni, Fe, Ag) with carbon nanosphere (CNS) support was synthesized by wet impregnation method and characterized by TEM, SAA, XRD and XRF. The effect of addition of metal X, variations in temperature, concentration of NaOH, and its sustainability were evaluated and studied on catalytic activity. The RuNi bimetallic catalyst had the highest catalytic activity with the addition of 1 M NaOH which resulted in a TOF value of 3481.9 h-1 and an activation energy of 23.054 kJ/mol indicating a synergistic effect between Ru and Ni metals on the carbon nanosphere support."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Situmorang, Sylpia Veronica
"Saat ini, masih banyak negara yang memanfaatkan energi dari bahan bakar fosil. Akan tetapi, penggunaan bahan bakar fosil memiliki masalah sehingga dikembangkan energi hidrogen sebagai sumber energi alternatif yang bersih. Hidrogen dapat disimpan dengan penyimpanan berbasis material. Hidrazin hidrat (N2H4·H2O) merupakan salah satu senyawa yang dapat digunakan untuk menghasilkan hidrogen melalui reaksi dehidrogenasi. Penggunaan nanopartikel trimetalik dapat meningkatkan aktivitas katalitik serta selektivitas hidrogen yang dihasilkan. SBA-15 disintesis untuk dijadikan penyangga nanopartikel trimetalik NiPtAg. NiPtAg/SBA-15 disintesis dari NiCl2.6H2O, K2PtCl6, AgNO3, serta SBA-15 dengan metode impregnasi basah dan kemudian direduksi menggunakan NaBH4. Untuk menentukan variasi komposisi logam terbaik, dilakukan optimasi komposisi trimetalik. NiPtAg/SBA-15 memiliki aktivitas katalitik yang baik. Ni0.6Pt0.2Ag0.2/SBA-15 merupakan variasi komposisi terbaik dengan selektivitas sebesar 94% dan nilai TOF sebesar 321,8779 h-1. Variasi komposisi terbaik dilakukan uji aktivitas katalitik pada suhu 30 °C, 50 °C, dan 70 °C. Energi aktivasi yang dibutuhkan oleh katalis NiPtAg/SBA-15 pada reaksi dehidrogenasi hidrazin hidrat adalah sebesar 55,6306 kJ/mol.

Currently, there are still many countries that use energy from fossil fuels. However, the use of fossil fuels has many problems so that hydrogen energy is developed as a clean alternative energy source. Hydrogen can be stored by material-based storage. Hydrazine hydrate (N2H4·H2O) is one of the compounds that can be used to produce hydrogen through a dehydrogenation reaction. The use of trimetallic nanoparticles can increase the catalytic activity and selectivity of the hydrogen produced. SBA-15 was synthesized to be used as a support for NiPtAg trimetallic nanoparticles. NiPtAg/SBA-15 was synthesized from NiCl2.6H2O, K2PtCl6, AgNO3, and SBA-15 by wet impregnation method and then reduced by NaBH4. To determine the best variation of metal composition, optimization of the trimetallic composition was carried out. NiPtAg/SBA-15 has good catalytic activity. Ni0.6Pt0.2Ag0.2/SBA-15 is the best composition variation with selectivity of 94% and TOF of 321,8779 h-1. The best composition variations were tested for catalytic activity at temperatures of 30 °C, 50 °C, and 70 °C. The activation energy required by the NiPtAg/SBA-15 catalyst in the dehydrogenation reaction of hydrazine hydrate is 55,6306 kJ/mol."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ar Rasyid Farhandha Putra
"Amonia borana (NH3BH3) dapat digunakan sebagai pembawa hidrogen untuk produksi energi hidrogen karena kandungan hidrogennya yang besar yaitu 19,6 wt%. Sintesis katalis Ru/CeO2 dengan variasi morfologi penyangga nanosphere, irreguler, dan nanocubes dilakukan untuk reaksi dehidrogenasi amonia borana. Penambahan Zn sebagai logam kedua pada katalis juga dilakukan. Karakterisasi XRD, XRD, SAA, TEM, dan Spektroskopi Raman dilakukan untuk katalis. Katalis diuji pada reaksi dehidrogenasi amonia boran dengan variasi morfologi, suhu, komposisi, konsentrasi NaOH, dan durabilitasnya. Katalis Ru/CeO2 nanosphere mempunyai aktivitas katalitik terbaik di kondisi NaOH 1 M dengan nilai TOF 748,18 h-1 . Energi aktivasi yang didapatkan dari reaksi adalah 43,06 kJ/mol.

Ammonia boranae (NH3BH3) can be used as a hydrogen carrier for hydrogen energy production due to its high hydrogen content, which is 19.6 wt%. The synthesis of Ru/CeO2 catalyst with variations in nanosphere, irregular, and nanocube morphology as supports was carried out for the dehydrogenation reaction of ammonia boranae. The addition of Zn as a second metal in the catalyst was also performed. Characterization tests such as XRD, XRD, SAA, TEM, and Raman spectroscopy were conducted on the catalyst. The catalyst was tested for the dehydrogenation reaction of ammonia boranae with variations in morphology, temperature, composition, NaOH concentration, and durability. The catalytic activity of the Ru/CeO2 nanosphere catalyst is most pronounced when operating under 1 M NaOH conditions, achieving a TOF value of 748.18 h-1 . The activation energy obtained from the reaction is 43.06 kJ/mol."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Graciella Stephanie Dwiningtyas
"Pemanasan global dan perubahan iklim merupakan isu lingkungan terbesar pada abad ke-21 yang mengakibatkan emisi gas CO2 yang terus meningkat setiap tahunnya. Peningkatan emisi gas CO2 yang disebabkan oleh aktivitas manusia menyebabkan upaya pengurangan emisi terus dilakukan. Reaksi hidrogenasi merupakan salah satu reaksi yang dapat dilakukan untuk mengubah CO2. Sifat CO2 yang stabil secara termodinamik dan inert menyebabkan katalis digunakan untuk mempermudah reaksi. Katalis berbasis nikel merupakan katalis yang banyak digunakan menggantikan katalis logam mulia untuk hidrogenasi CO2. Pada penelitian ini, katalis NiSn tersangga oleh karbon mesopori (NiSn/MC) disintesis untuk mengkonversi CO2 menjadi formaldehida dan metanol melalui reaksi hidrogenasi. Pola difraksi NiSn/MC menunjukkan puncak pada 26.02°; 28,6°; 33,8°; 42,5°; 44,9°; 59,2°; 71,2°; 79,5°; 86,6°. yang merupakan puncak difraksi dari grafit dan NiSn. Karakterisasi SEM-EDX mapping dan TEM menunjukkan partikel NiSn tersebar merata pada permukaan karbon mesopori dan tidak membentuk klaster tersendiri. Berdasarkan hasil reaksi yang dilakukan, material Ni5Sn1/MC memberikan konversi CO2 tertinggi sebesar 39.86% dibandingkan Ni1Sn1/MC, Ni3Sn1/MC, Ni/MC, Sn/MC, dan NiSn NPs. Yield metanol Ni5Sn1/MC sebesar 86.31 mmol/gcat. Kondisi optimum untuk reaksi hidrogenasi CO2 didapat pada temperatur 175°C dengan rasio gas CO2:H2 sebesar 1:7.

Global warming and climate change are the biggest environmental issues in the 21st century due to the increase of CO2 emissions in the atmosphere. The increasing CO2 emissions has led to continuing efforts to reduce CO2 levels. One of the methods to reduce CO2 emission is to convert CO2 through chemical reactions such as the hydrogenation reaction into more valuable chemicals. The nature of CO2 which is stable and inert causes the reaction of CO2 needs to be facilitated by a catalyst. This research synthesized NiSn nanoparticles on mesoporous carbon (NiSn/MC) to convert CO2 into formaldehyde and methanol. The diffraction patterns of NiSn/MC exhibit peaks at 26.02°, 28,6°; 33,8°; 42,5°; 44,9°; 59,2°; 71,2°; 79,5°; 86,6° which correspond to diffraction peaks of graphite and NiSn. SEM-EDX Mapping and TEM characterization reveal that NiSn are uniformly dispersed on the mesoporous carbon surface and do not form distinct clusters. Based on the conducted reactions, Ni5Sn1/MC demonstrated the highest CO2 conversion of 39.86% compared to Ni1Sn1/MC, Ni3Sn1/MC, Ni/MC, Sn/MC, and NiSn NPs. The methanol yield of CO2 hydrogenation with Ni5Sn1/MC is 86.31 mmol/gcat. The optimum conditions for the CO2 hydrogenation reaction were achieved at a temperature of 175°C and CO2:H2 gas ratio of 1:7."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zhofran Bintang Chairuddin
"ABSTRACT
Terbatasnya sumber daya dan cadangan minyak serta kemampuan kilang untuk eksplorasi, menyebabkan kondisi sumber energi Indonesia sampai saat ini masih bergantung dengan penyediaan minyak. Perpres (Perpres No 5 tahun 2006) mewujudkan adanya optimalisasi penyediaan bahan bakar dengan berbasis energi baru terbarukan (EBT) dimana diantaranya meningkatkan penggunaan bahan bakar energi nabati (biofuel) yaitu biodiesel dan bioetanol. Katalis heterogen yang digunakan adalah penukar ion yang dapat digunakan dalam menghasilkan biodiesel yang fasanya padat sehingga pemisahannya lebih mudah dan dapat dipakai berulang. Model Kinetika dari reaksi tersebut ditentukan dengan fitting data menggunakan Microsoft excel. Dari simulasi tersebut didapatkan parameter kinetik dan hasilnya akan dibandingkan dengan data eksperimen sehingga dapat diketahui akurasi dari model tersebut.

ABSTRACT
Limited resources and reserves and the ability of refineries to oil exploration, causing the condition of Indonesian energy source is still dependent on the supply of oil. Presidential Decree (Presidential Decree No. 5 of 2006) to realize the optimization of the provision of fuels with renewable energy-based (EBT) which include increasing the use of bio energy fuels (biofuels) are biodiesel and bioethanol. Making biodiesel using alkaline catalysts, acid catalysts, biocatalysts, supercritical methanol is very inefficient due to biodiesel production costs are very high, it is not environmentally friendly because most of the catalyst discharged into the environment and are difficult to be separated from their liquid products.Ion exchangers that are already saturated can be reactivated and repeated use . The study will be conducted by curve fitting using microsoft excel."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>