Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10810 dokumen yang sesuai dengan query
cover
"This is the second volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.
Chapter “Effects of Liquid Impurity on Laser-Induced Gas Breakdown in Quiescent Gas: Experimental and Numerical Investigations” is available open access under a Creative Commons Attribution 4.0 International License at link.springer.com."
Switzerland: Springer Cham, 2019
e20503022
eBooks  Universitas Indonesia Library
cover
"This is the first volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields."
Switzerland: Springer Nature, 2019
e20505443
eBooks  Universitas Indonesia Library
cover
"This book presents high-quality contributions in the subject area of Aerospace System Science and Engineering, including topics such as: Trans-space vehicle systems design and integration, Air vehicle systems, Space vehicle systems, Near-space vehicle systems, Opto-electronic system, Aerospace robotics and unmanned system, Aerospace robotics and unmanned system, Communication, navigation and surveillance, Dynamics and control, Intelligent sensing and Information fusion, Aerodynamics and aircraft design, Aerospace propulsion, Avionics system, Air traffic management, Earth observation, Deep space exploration, Bionic micro-aircraft/spacecraft.
The book is a selection of articles from the 2nd International Conference on Aerospace System Science and Engineering, held in Moscow, Russia, from 31 July to 1 August 2018. The conference is co-organized by Shanghai Jiao Tong University and Moscow Aviation Institute. This is a forum that brings together experts in astronautics and aeronautics to share new ideas and findings. "
Singapore: Springer Nature, 2019
e20509957
eBooks  Universitas Indonesia Library
cover
"This book is a compilation of peer-reviewed papers from the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). The symposium is a common endeavour between the four national aerospace societies in China, Australia, Korea and Japan, namely, the Chinese Society of Aeronautics and Astronautics (CSAA), Royal Aeronautical Society Australian Division (RAeS Australian Division), the Korean Society for Aeronautical and Space Sciences (KSAS) and the Japan Society for Aeronautical and Space Sciences (JSASS). APISAT is an annual event initiated in 2009 to provide an opportunity for researchers and engineers from Asia-Pacific countries to discuss current and future advanced topics in aeronautical and space engineering."
Singapore: Springer Singapore, 2019
e20503064
eBooks  Universitas Indonesia Library
cover
Marpaung, Mangasi Alion
"A comprehensive study has been made on the dynamical process-taking place in the laser-plasma generation induced by a TEA CO2 laser bombardment on metal target and non-metal target from low to high pressures surrounding gas. In the case of metal target, pure zinc plate was used as a target and bombarded with 400-mJ-laser pulse energy. Dynamical characterization of plasma expansion and excitation were examined in detail both for target atomic emission (Zn I 481.0 nm) and gas atomic emission (He 1 587.6 nm) by using a unique time-resolved spatial distribution measurement and conventional emission spectroscopic detection method. The results showed that the plasma expands and develops with time. The mechanism of plasma generation can be classified into three cases depending on .the surrounding gas pressures; target shock wave plasma in the pressure range between 2 Ton and 20 Ton, coupling shock wave plasma in the pressure range between 50 Torr and 200 Torr and gas break down shock wave plasma in the pressure range between 200 Ton and I atm. In all cases in the laser-plasma generation under TEA CO2 laser bombardment on metal target, shock wave process always plays important role for exciting the target atoms and gas molecules.
In the case of non-metal target, a museum glass was used as a target and bombarded with a 400 nd laser pulse energy. By using the conventional emission spectroscopic detection method, namely temporally and spatially integrated and time-resolved spatially integrated of plasma emission, it was shown that the plasma mainly consists of target atomic emission. Only weak gas atomic emission intensity could be observed even at I atm of surrounding gas pressure. These results indicate that the gas breakdown is not a major process responsible to the plasma formation even at high pressure surrounding gas. Shock wave process was considered as an important role in this plasma formation. By the use of shadowgraph technique to detect the density jump signal due to the shock wave front involving a He-Ne laser as a probe light, simultaneous detection of the shock wave front and the emission front was successfully implemented. The result showed that at the initial stages of plasma expansion shock wave front and emission front coincide and move together with time. At the later stages of plasma expansion the two fronts became separate with the emission front left behind the shock wave front. These results are completely coinciding with the shock wave plasma model. Unfortunately, in this experiment we succeed to detect the density jump signal only for high pressure surrounding gas, above 100 Torr. At the pressures lower than 100 Torr the density jump signal was very weak and it is difficult to distinguish with the noise including in the signal.
The other important experimental results that support the shock wave plasma model were also obtained in this experiment, namely the coincidence of emission front regardless of their atomic weight and sub-target effect. By using lead glass as a sample, which contain Pb, Si, and Ca, it was confirmed that the emission front of the Pb I 450.8 nm, Si 1288.2 nm and Ca I 422.6 nm almost coincide regardless of their atomic weight. This result also supports the shock wave plasma model because, by the stagnation of the propelling atoms, the front position of the all atoms coincides regardless of its mass. In the case of sub-target effect, confirm that plasma could be produced even for soft target if sub-target is set behind the sample. In this case we use a quartz sample as a sub-target and a vinyl tape was attached to the quartz sample as a target. The TEA CO2 laser bombardment was used at 150 ml and at 1 atm of air. The main role of the subtarget is to produce a repulsion force for atom gushing with high speed. For shock wave, high speed is necessary condition to compress the gas.
Coincidence of the movement of the shock wave front and the emission front in the initial stages of plasma expansion is a direct proof of the shock wave plasma model. By improving the detection technique of the density jump associated with the shock wave, the correlation between the shock wave front and the emission front was examined in detail. For this purpose rainbow interferometer system, which has higher sensitivity compared with the shadowgraph technique, was used to detect the density jump signal. We succeed to realize simultaneous detection of shock wave front and emission front from 3 Ton until 1 atm of air when a quartz sample is bombarded with a 600 nil TEA C02 laser. In all pressure that were examined, the shock wave front and the emission front always coincide and move together with time in the initial stages and separate at the later stages with emission front left behind the shock wave front. The coincidence of the shock wave front and emission front and move together with time at the initial stages of plasma expansion was also obtained by using ruby as a sample at 10 Torr and 100 Ton of air as well as with museum glass at the same laser pulse energy.
Another important experimental result obtained in this experiment is that confirmation of the coincidence of the target atomic emission front and gas atomic emission front and density jump. This confirmation was obtained by examined a Quartz sample in 50 Ton of helium and a zinc sample in 100 Ton of helium. This result strongly supports the shock wave plasma model because, in ordinary shock tube experiment, gas emission takes place just behind the shock wave.
From a practical point of view of direct microanalysis for spectrochemicaI application of alloy metal samples such as brass, selective vaporization effect was also studied. The results showed that even for Nd-YAG laser with short pulse duration (8 ns) and high power density (30 GWcm 2), selective vaporization take place to a certain extend. It was demonstrated in this experiment that selective vaporization is enhanced if the laser irradiation was repeated on the same spot of sample surface. Meanwhile it was also shown in this experiment that the effect of selective vaporization could be significantly suppressed by increasing the surrounding gas pressure from 2 Toff to around 50 Torr of air."
Depok: Fakultas Teknik Universitas Indonesia, 2000
D234
UI - Disertasi Membership  Universitas Indonesia Library
cover
"The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state.
This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows and the inside of the shock wave itself are also examined. Examples of specific non-equilibrium flows are given, generally corresponding to those encountered during spatial missions or in shock tube experiments.
"
Berlin: [Springer, ], 2012
e20398357
eBooks  Universitas Indonesia Library
cover
Takayama, Kazuyoshi
"This book presents a wealth of images of shock wave phenomena, gathered by the author over the past 40 years. Shadowgrams and interferograms of basic shock-dynamic topics such as reflection, diffraction, refraction, and focusing of shock waves in gases and liquids are sequentially displayed. Though the images themselves are self-explanatory, brief explanations of the experimental conditions are included, so as to facilitate analysis and numerical reproduction of the image data.
In addition, the book presents interferometric observations of underwater shock wave/bubble interactions, and highlights the multifaceted applications of shock wave phenomena to medicine and industry. Given its scope, the book offers a unique resource for students and researchers who are interested in shock wave phenomena. However, the content has also been specifically prepared for the benefit of readers who are interested in gas dynamics and medical applications of shock waves, and are looking for reliable experimental images."
Switzerland: Springer Cham, 2019
e20510999
eBooks  Universitas Indonesia Library
cover
Lax, Peter D.
"This book deals with the mathematical side of the theory of shock waves. The author presents what is known about the existence and uniqueness of generalized solutions of the initial value problem subject to the entropy conditions. The subtle dissipation introduced by the entropy condition is investigated and the slow decay in signal strength it causes is shown."
Philadelphia: Society for Industrial and Applied Mathematics, 1973
e20451130
eBooks  Universitas Indonesia Library
cover
cover
Muhammad Rayhan Fathoni Aziz
"Manuver u-turn oleh kendaraan berat memiliki waktu tempuh serta dampak terhadap lalu lintas berbeda dengan manuver u-turn oleh kendaraan ringan disebabkan perbedaan karakteristik antara kedua tipe kendaraan tersebut, sehingga analisis mengenai dampak manuver u-turn oleh kendaraan berat secara spesifik diperlukan. Teori shock wave dipilih sebagai pendekatan analisis pada penelitian ini karena dianggap lebih cocok digunakan untuk menganalisis dampak manuver u-turn pada jalan dengan lalu lintas kendaraan berat yang tinggi dibandingkan dengan pendekatan lain seperti tundaan dan tingkat layanan. Tujuan penelitian ini adalah menganalisis panjang antrian akibat manuver u-turn kendaraan berat pada jalur asal serta pada jalur tujuan kendaraan berat yang melakukan u-turn untuk berbagai kondisi komposisi kendaraan berat dan rasio kendaraan berat yang melakukan u-turn terhadap seluruh kendaraan berat yang melintas pada jalur asal kendaraan berat yang melakukan u-turn.
Dalam metodologi penelitian ini, data panjang antrian diperoleh dari hasil simulasi lalu lintas mikroskopik menggunakan VISSIM, di mana model lalu lintas mikroskopik yang digunakan pada simulasi dikalibrasi serta divalidasi menggunakan data lapangan yang didapatkan dari survei di salah satu bukaan median Jalan Marunda Bidara, Jakarta Utara. Berdasarkan tujuan penelitian, variabel bebas, terikat, dan terkontrol yang digunakan yaitu komposisi kendaraan berat (%KB), panjang antrian, serta arus kendaraan dari hulu yang melintas dalam skr dan rasio jumlah kendaraan berat yang melakukan manuver u-turn terhadap jumlah seluruh kendaraan berat yang melintas pada jalur asal kendaraan berat yang melakukan u-turn (%KB u-turn) secara berturut-turut.
Berdasarkan hasil analisis, dapat disimpulkan bahwa di bukaan median yang lalu lintas u-turn kendaraannya didominasi oleh kendaraan berat, pada jalur asal kendaraan berat yang melakukan u-turn, apabila komposisi arus kendaraan berat dan rasio jumlah kendaraan berat yang melakukan u-turn terhadap jumlah seluruh kendaraan berat yang melintas pada jalur tersebut diketahui, maka panjang antrian dapat dirumuskan dengan model linier. Sedangkan pada jalur tujuan kendaraan berat yang melakukan u-turn, panjang antrian tidak dapat dirumuskan berdasarkan komposisi arus kendaraan berat dan rasio jumlah kendaraan berat yang melakukan u-turn terhadap jumlah seluruh kendaraan berat yang melintas pada jalur asal kendaraan yang melakukan u-turn.

U-turn manuvers by heavy vehicles have travel times and effects towards traffic that differ from that of light vehicles due to the differences in the characterstics of the two vehicle types, therefore an analysis on the effects of u-turn manuvers by heavy vehicles specifically is deemed necessary. Shock wave theory has been chosen as the approach for analysis in this study due to it being considered more suitable for analyzing the impact of u-turn maneuvers on roads with high heavy vehicle traffic compared to other approaches such as delay and level of service. The purpose of this study is to analyze the lengths of queues caused by heavy vehicle u-turn manuvers on the u-turning heavy vehicles’ initial and final carriageways for various heavy vehicle compositions and ratios of u-turing heavy vehicles to total heavy vehicles passing through the initial carraigeway.
In the methodology of this study, queue length data is obtained from the results of microscopic traffic simulation using VISSIM, where the microscopic traffic model used for simulations is calibrated and validated using field data from one of the median openings on Jalan Marunda Bidara, North Jakarta. Based on the purpose of the study, the free, bound, and control variables used are heavy vehicle composition (%KB), queue length, and upstream traffic volume in pcu along with the ratio of u-turning heavy vehicles to total heavy vehicles passing through the u-turning heavy vehicles’ initial carriageway (%KB u-turn), respectively.
Based on the analysis, it can be concluded that, on median openings where the u-turn traffic is dominated by heavy vehicles, on the initial carriageway of u-turning heavy vehicles, if the heavy vehicle composition and the ratio of u-turning heavy vehicles to total heavy vehicles passing through the carriageway are known, the queue length can be formulated with a linear model. Whereas on the final carriageway of u-turning heavy vehicles, the queue length cannot be formulated based on heavy vehicle composition and ratio of u-turning heavy vehicles to total heavy vehicles passing through the carriageway
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>